Dayangku Nordiyana B P Hassanel, Yi Ju, Asuka Takanashi, Azizah Algarni, Chee Leng Lee, Stephen J Kent, Colin W Pouton, Emily H Pilkington
{"title":"亲水聚合物对重复给药后加速血液中mRNA脂质纳米颗粒清除的影响。","authors":"Dayangku Nordiyana B P Hassanel, Yi Ju, Asuka Takanashi, Azizah Algarni, Chee Leng Lee, Stephen J Kent, Colin W Pouton, Emily H Pilkington","doi":"10.1039/d5nh00230c","DOIUrl":null,"url":null,"abstract":"<p><p>mRNA lipid nanoparticles (LNPs) have emerged as a leading delivery system for mRNA-based vaccines and therapeutics. However, a significant limitation of this system is the presence of poly(ethylene) glycol (PEG). It is widely known that repeated doses of PEG-based therapeutics can induce an anti-PEG antibody response, leading to the accelerated blood clearance (ABC) of LNP therapeutics requiring frequent dosing, as anti-PEG antibodies have been found present in a large proportion of the population. To address this issue, we developed a mouse model for LNP clearance after a repeated dose. We then synthesised LNPs with the PEG component replaced by a library of hydrophilic polymers: poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA), POEGMA-methacrylic acid (POEGMA (-)), POEGMA-2-(dimethylamino)ethyl methacrylate (POEGMA (+)), poly(<i>N</i>,<i>N</i>-dimethylacrylamide) (PDMA), and poly(<i>N</i>-(2-hydroxypropyl) methacrylamide) (PHPMA). Our results demonstrated that all three POEGMA LNPs, especially POEGMA (+) LNPs, exhibited minimal ABC effect after two weekly doses; in contrast, PDMA LNPs demonstrated significantly lower clearance in the presence of anti-PEG antibodies. This study highlights the potential of PEG-free polymer-LNPs as promising mRNA carriers that avoid rapid clearance with repeated administration.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of hydrophilic polymers on the accelerated blood clearance of mRNA lipid nanoparticles upon repeated administration.\",\"authors\":\"Dayangku Nordiyana B P Hassanel, Yi Ju, Asuka Takanashi, Azizah Algarni, Chee Leng Lee, Stephen J Kent, Colin W Pouton, Emily H Pilkington\",\"doi\":\"10.1039/d5nh00230c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>mRNA lipid nanoparticles (LNPs) have emerged as a leading delivery system for mRNA-based vaccines and therapeutics. However, a significant limitation of this system is the presence of poly(ethylene) glycol (PEG). It is widely known that repeated doses of PEG-based therapeutics can induce an anti-PEG antibody response, leading to the accelerated blood clearance (ABC) of LNP therapeutics requiring frequent dosing, as anti-PEG antibodies have been found present in a large proportion of the population. To address this issue, we developed a mouse model for LNP clearance after a repeated dose. We then synthesised LNPs with the PEG component replaced by a library of hydrophilic polymers: poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA), POEGMA-methacrylic acid (POEGMA (-)), POEGMA-2-(dimethylamino)ethyl methacrylate (POEGMA (+)), poly(<i>N</i>,<i>N</i>-dimethylacrylamide) (PDMA), and poly(<i>N</i>-(2-hydroxypropyl) methacrylamide) (PHPMA). Our results demonstrated that all three POEGMA LNPs, especially POEGMA (+) LNPs, exhibited minimal ABC effect after two weekly doses; in contrast, PDMA LNPs demonstrated significantly lower clearance in the presence of anti-PEG antibodies. This study highlights the potential of PEG-free polymer-LNPs as promising mRNA carriers that avoid rapid clearance with repeated administration.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nh00230c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00230c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Influence of hydrophilic polymers on the accelerated blood clearance of mRNA lipid nanoparticles upon repeated administration.
mRNA lipid nanoparticles (LNPs) have emerged as a leading delivery system for mRNA-based vaccines and therapeutics. However, a significant limitation of this system is the presence of poly(ethylene) glycol (PEG). It is widely known that repeated doses of PEG-based therapeutics can induce an anti-PEG antibody response, leading to the accelerated blood clearance (ABC) of LNP therapeutics requiring frequent dosing, as anti-PEG antibodies have been found present in a large proportion of the population. To address this issue, we developed a mouse model for LNP clearance after a repeated dose. We then synthesised LNPs with the PEG component replaced by a library of hydrophilic polymers: poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA), POEGMA-methacrylic acid (POEGMA (-)), POEGMA-2-(dimethylamino)ethyl methacrylate (POEGMA (+)), poly(N,N-dimethylacrylamide) (PDMA), and poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA). Our results demonstrated that all three POEGMA LNPs, especially POEGMA (+) LNPs, exhibited minimal ABC effect after two weekly doses; in contrast, PDMA LNPs demonstrated significantly lower clearance in the presence of anti-PEG antibodies. This study highlights the potential of PEG-free polymer-LNPs as promising mRNA carriers that avoid rapid clearance with repeated administration.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.