Nanoscale Horizons最新文献

筛选
英文 中文
Biodegradable Persistent ROS-Generating Nanosonosensitizers for Enhanced Synergistic Cancer Therapy by Inducing Cascaded Oxidative Stress 通过诱导级联氧化应激增强癌症协同治疗的可生物降解持久性 ROS 生成纳米声纳敏化剂
IF 9.7 2区 材料科学
Nanoscale Horizons Pub Date : 2024-09-11 DOI: 10.1039/d4nh00189c
Yue Chen, Tong Ding, Zhengzheng Qian, Zerui Ma, Liming Zhou, Zhiling Li, Runkai Lv, Yinghui Xu, Yingjie Xu, Linhui Hao, Chen Zhu, Xikuang Yao, Wenying Yu, Wenpei Fan
{"title":"Biodegradable Persistent ROS-Generating Nanosonosensitizers for Enhanced Synergistic Cancer Therapy by Inducing Cascaded Oxidative Stress","authors":"Yue Chen, Tong Ding, Zhengzheng Qian, Zerui Ma, Liming Zhou, Zhiling Li, Runkai Lv, Yinghui Xu, Yingjie Xu, Linhui Hao, Chen Zhu, Xikuang Yao, Wenying Yu, Wenpei Fan","doi":"10.1039/d4nh00189c","DOIUrl":"https://doi.org/10.1039/d4nh00189c","url":null,"abstract":"Sonodynamic therapy (SDT) is gaining popularity in cancer treatment due to its superior controllability and high tissue permeability. Nonetheless, the efficacy of SDT is severely diminished by the transient generation of limited reactive oxygen species (ROS). Herein, we introduce an acid-activated nanosonosensitizer, CaO2@PCN, by the controllable coating of porphyrinic metal-organic frameworks (PCN-224) on CaO2 to induce cascaded oxidative stress in tumors. The PCN-224 doping could generate ROS during SDT to induce intracellular oxidative stress and abnormal calcium channels. Meanwhile, the ultrasound also promotes extracellular calcium influx. In addition, the CaO2@PCN will sequentially degrade in the tumor cell lysosomes, releasing Ca2+ and H2O2 to induce further abnormal calcium channels and elevate the levels of Ca2+. Insufficient catalase (CAT) in tumor cells promotes intracellular calcium overload, which can induce persistent ROS generation and mitochondrial dysfunction through ion interference therapy (IIT). More importantly, PCN-224 also protects CaO2 against significant degradation under neutral conditions. Hence, the well-designed CaO2@PCN produces synergistic SDT/IIT effects and persistent ROS against cancer. More notably, the acidity-responsive biodegradability endows CaO2@PCN with excellent biosafety and promising clinical potential.","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolution of immune profiling: will there be a role for nanoparticles? 免疫分析的演变:纳米粒子是否会发挥作用?
IF 9.7 2区 材料科学
Nanoscale Horizons Pub Date : 2024-09-10 DOI: 10.1039/d4nh00279b
Olga E. Eremina, Celine Vazquez, Kimberly N. Larson, Anthony Mouchawar, Augusta Fernando, Cristina Zavaleta
{"title":"The evolution of immune profiling: will there be a role for nanoparticles?","authors":"Olga E. Eremina, Celine Vazquez, Kimberly N. Larson, Anthony Mouchawar, Augusta Fernando, Cristina Zavaleta","doi":"10.1039/d4nh00279b","DOIUrl":"https://doi.org/10.1039/d4nh00279b","url":null,"abstract":"Immune profiling provides insights into the functioning of the immune system, including the distribution, abundance, and activity of immune cells. This understanding is essential for deciphering how the immune system responds to pathogens, vaccines, tumors, and other stimuli. Analyzing diverse immune cell types facilitates the development of personalized medicine approaches by characterizing individual variations in immune responses. With detailed immune profiles, clinicians can tailor treatment strategies to the specific immune status and needs of each patient, maximizing therapeutic efficacy while minimizing adverse effects. In this review, we discuss the evolution of immune profiling, from interrogating bulk cell samples in solution to evaluating the spatially-rich molecular profiles across intact preserved tissue sections. We also review various multiplexed imaging platforms recently developed, based on immunofluorescence and imaging mass spectrometry, and their impact on the field of immune profiling. Identifying and localizing various immune cell types across a patient's sample has already provided important insights into understanding disease progression, the development of novel targeted therapies, and predicting treatment response. We also offer a new perspective by highlighting the unprecedented potential of nanoparticles (NPs) that can open new horizons in immune profiling. NPs are known to provide enhanced detection sensitivity, targeting specificity, biocompatibility, stability, multimodal imaging features, and multiplexing capabilities. Therefore, we summarize the recent developments and advantages of NPs, which can contribute to advancing our understanding of immune function to facilitate precision medicine. Overall, NPs have the potential to offer a versatile and robust approach to profile the immune system with improved efficiency and multiplexed imaging power.","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved High-Current-Density Hydrogen Evolution Reaction Kinetics on Single-Atom Co Embedded in Order Pore Structured Nitrogen Assembly Carbon Support 单原子 Co 嵌入阶梯孔结构氮组装碳支持物上的改进型高电流密度氢气进化反应动力学
IF 9.7 2区 材料科学
Nanoscale Horizons Pub Date : 2024-09-10 DOI: 10.1039/d4nh00299g
Jiaqi Yu, Yu Yan, Yuemin Lin, Hengzhou Liu, Yuting Li, Shaohua Xie, Simin Sun, Fudong Liu, Zhiguo Zhang, Wenzhen Li, Jin-Su Oh, Lin Zhou, Long Qi, Bin Wang, Wenyu Huang
{"title":"Improved High-Current-Density Hydrogen Evolution Reaction Kinetics on Single-Atom Co Embedded in Order Pore Structured Nitrogen Assembly Carbon Support","authors":"Jiaqi Yu, Yu Yan, Yuemin Lin, Hengzhou Liu, Yuting Li, Shaohua Xie, Simin Sun, Fudong Liu, Zhiguo Zhang, Wenzhen Li, Jin-Su Oh, Lin Zhou, Long Qi, Bin Wang, Wenyu Huang","doi":"10.1039/d4nh00299g","DOIUrl":"https://doi.org/10.1039/d4nh00299g","url":null,"abstract":"Single-atom catalysis is a subcategory of heterogeneous catalysis with well-defined active sites. Numerous endeavors have been devoted to developing single-atom catalysts for industrially applicable catalysis, including hydrogen evolution reaction (HER). High current density electrolyzers have been pursued for single-atom catalysts to increase active site density and enhance mass transfer. Here, we reason that single-atom metal embedded in nitrogen assembly carbon (NAC) catalysts with high single-atom density, large surface area, and ordered mesoporosity, could fulfill the industrially applicable HER. Among several different single-atom catalysts, the HER overpotential with the best performing Co-NAC reaches 200 mA cm<small><sup>−2</sup></small> current density at 310 mV, relevant to industrial applicable current density. Density functional theory (DFT) calculations suggest the feasible hydrogen binding on single-atom Co results in the promising HER activity over Co-NAC. The best-performing Co-NAC shows robust performance under alkaline conditions at 50 mA cm<small><sup>−2</sup></small> current density for 20 h in an H-cell and at 150 mA cm<small><sup>−2</sup></small> current density for 100 h in a flow cell.","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic Phase Control of Cu-Sn Alloy Electrocatalysts for Selective CO2 Reduction 用于选择性还原二氧化碳的铜锡合金电催化剂的热力学相位控制
IF 9.7 2区 材料科学
Nanoscale Horizons Pub Date : 2024-09-10 DOI: 10.1039/d4nh00393d
Soohyun Go, Woosuck Kwon, Deokgi Hong, Taemin Lee, Sang-Ho Oh, Daewon Bae, Jeong-Heon Kim, Seolha Lim, Young-Chang Joo, Dae-Hyun Nam
{"title":"Thermodynamic Phase Control of Cu-Sn Alloy Electrocatalysts for Selective CO2 Reduction","authors":"Soohyun Go, Woosuck Kwon, Deokgi Hong, Taemin Lee, Sang-Ho Oh, Daewon Bae, Jeong-Heon Kim, Seolha Lim, Young-Chang Joo, Dae-Hyun Nam","doi":"10.1039/d4nh00393d","DOIUrl":"https://doi.org/10.1039/d4nh00393d","url":null,"abstract":"In the electrochemical CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR), Cu alloy electrocatalysts can control the CO<small><sub>2</sub></small>RR selectivity by modulating the intermediate binding energy. Here, we report the thermodynamic-based Cu-Sn bimetallic phase control in heterogeneous catalysts for selective CO<small><sub>2</sub></small> conversion. Starting from the thermodynamic understanding about Cu-Sn bimetallic compounds, we established the specific processing window for Cu-Sn bimetallic phase control. To modulate the Cu-Sn bimetallic phases, we controlled the oxygen partial pressure (pO<small><sub>2</sub></small>) during the calcination of electrospun Cu and Sn ions-incorporated nanofibers (NFs). This resulted in the formation of CuO-SnO<small><sub>2</sub></small> NFs (full oxidation), Cu-SnO<small><sub>2</sub></small> NFs (selective reduction), Cu<small><sub>3</sub></small>Sn/CNFs, Cu<small><sub>41</sub></small>Sn<small><sub>11</sub></small>/CNFs, and Cu<small><sub>6</sub></small>Sn<small><sub>5</sub></small>/CNFs (full reduction). In the CO<small><sub>2</sub></small>RR, CuO-SnO<small><sub>2</sub></small> NFs exhibited formate (HCOO<small><sup>-</sup></small>) production and Cu-SnO<small><sub>2</sub></small> NFs showed carbon monoxide (CO) production with the Faradaic efficiency (FE) of 65.3% at -0.99 V (vs RHE) and 59.1% at -0.89 V (vs RHE) respectively. Cu-rich Cu<small><sub>41</sub></small>Sn<small><sub>11</sub></small>/CNFs and Cu<small><sub>3</sub></small>Sn/CNFs enhanced the methane (CH<small><sub>4</sub></small>) production with the FE of 39.1% at -1.36 V (vs RHE) and 34.7% at -1.5 V (vs RHE). However, Sn-rich Cu<small><sub>6</sub></small>Sn<small><sub>5</sub></small>/CNFs produced HCOO<small><sup>-</sup></small> with the FE of 58.6% at -2.31 V (vs RHE). This study suggests the methodology for bimetallic catalyst design and steering the CO<small><sub>2</sub></small>RR pathway by controlling the active sites of Cu-Sn alloys.","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. 等离子纳米粒子传感器:当前进展、挑战和未来前景。
IF 8 2区 材料科学
Nanoscale Horizons Pub Date : 2024-09-06 DOI: 10.1039/d4nh00226a
Krishna Kant, Reshma Beeram, Yi Cao, Paulo S S Dos Santos, Lara González-Cabaleiro, Daniel García-Lojo, Heng Guo, Younju Joung, Siddhant Kothadiya, Marta Lafuente, Yong Xiang Leong, Yiyi Liu, Yuxiong Liu, Sree Satya Bharati Moram, Sanje Mahasivam, Sonia Maniappan, Daniel Quesada-González, Divakar Raj, Pabudi Weerathunge, Xinyue Xia, Qian Yu, Sara Abalde-Cela, Ramon A Alvarez-Puebla, Rizia Bardhan, Vipul Bansal, Jaebum Choo, Luis C C Coelho, José M M M de Almeida, Sergio Gómez-Graña, Marek Grzelczak, Pablo Herves, Jatish Kumar, Theobald Lohmueller, Arben Merkoçi, José Luis Montaño-Priede, Xing Yi Ling, Reyes Mallada, Jorge Pérez-Juste, María P Pina, Srikanth Singamaneni, Venugopal Rao Soma, Mengtao Sun, Limei Tian, Jianfang Wang, Lakshminarayana Polavarapu, Isabel Pastoriza Santos
{"title":"Plasmonic nanoparticle sensors: current progress, challenges, and future prospects.","authors":"Krishna Kant, Reshma Beeram, Yi Cao, Paulo S S Dos Santos, Lara González-Cabaleiro, Daniel García-Lojo, Heng Guo, Younju Joung, Siddhant Kothadiya, Marta Lafuente, Yong Xiang Leong, Yiyi Liu, Yuxiong Liu, Sree Satya Bharati Moram, Sanje Mahasivam, Sonia Maniappan, Daniel Quesada-González, Divakar Raj, Pabudi Weerathunge, Xinyue Xia, Qian Yu, Sara Abalde-Cela, Ramon A Alvarez-Puebla, Rizia Bardhan, Vipul Bansal, Jaebum Choo, Luis C C Coelho, José M M M de Almeida, Sergio Gómez-Graña, Marek Grzelczak, Pablo Herves, Jatish Kumar, Theobald Lohmueller, Arben Merkoçi, José Luis Montaño-Priede, Xing Yi Ling, Reyes Mallada, Jorge Pérez-Juste, María P Pina, Srikanth Singamaneni, Venugopal Rao Soma, Mengtao Sun, Limei Tian, Jianfang Wang, Lakshminarayana Polavarapu, Isabel Pastoriza Santos","doi":"10.1039/d4nh00226a","DOIUrl":"10.1039/d4nh00226a","url":null,"abstract":"<p><p>Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378978/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double-layered protein nanoparticles conjugated with truncated flagellin induce improved mucosal and systemic immune responses in mice. 与截短鞭毛蛋白共轭的双层蛋白质纳米颗粒可诱导小鼠产生更好的粘膜和全身免疫反应。
IF 8 2区 材料科学
Nanoscale Horizons Pub Date : 2024-09-06 DOI: 10.1039/d4nh00287c
Joo Kyung Kim, Wandi Zhu, Chunhong Dong, Lai Wei, Yao Ma, Timothy Denning, Sang-Moo Kang, Bao-Zhong Wang
{"title":"Double-layered protein nanoparticles conjugated with truncated flagellin induce improved mucosal and systemic immune responses in mice.","authors":"Joo Kyung Kim, Wandi Zhu, Chunhong Dong, Lai Wei, Yao Ma, Timothy Denning, Sang-Moo Kang, Bao-Zhong Wang","doi":"10.1039/d4nh00287c","DOIUrl":"10.1039/d4nh00287c","url":null,"abstract":"<p><p>Influenza viral infection poses a severe risk to global public health. Considering the suboptimal protection provided by current influenza vaccines against circulating influenza A viruses, it is imperative to develop novel vaccine formulations to combat respiratory infections. Here, we report the development of an intranasally-administered, self-adjuvanted double-layered protein nanoparticle consisting of influenza nucleoprotein (NP) cores coated with hemagglutinin (HA) and a truncated form of bacterial flagellin (tFliC). Intranasal vaccination of these nanoparticles notably amplified both antigen-specific humoral and cellular immune responses in the systematic compartments. Elevated antigen-specific IgA and IgG levels in mucosal washes, along with increased lung-resident memory B cell populations, were observed in the respiratory system of the immunized mice. Furthermore, intranasal vaccination of tFliC-adjuvanted nanoparticles enhanced survival rates against homologous and heterologous H3N2 viral challenges. Intriguingly, mucosal slow delivery of the prime dose (by splitting the dose into 5 applications over 8 days) significantly enhanced germinal center reactions and effector T-cell populations in lung draining lymph nodes, therefore promoting the protective efficacy against heterologous influenza viral challenges compared to single-prime immunization. These findings highlight the potential of intranasal immunization with tFliC-adjuvanted protein nanoparticles to bolster mucosal and systemic immune responses, with a slow-delivery strategy offering a promising approach for combating influenza epidemics.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface modification of biomass-derived self-supported carbon nano network as an emerging platform for advanced field emitter devices and supercapacitor applications 生物质自支撑碳纳米网络的表面改性作为先进场发射器件和超级电容器应用的新兴平台
IF 9.7 2区 材料科学
Nanoscale Horizons Pub Date : 2024-09-05 DOI: 10.1039/d4nh00314d
Pallavi Mutadak, Amol Vedpathak, Sambhaji Warule, Nilima Chaudhari, Shrikrishna Dattatraya Sartale, Mahendra A More, Dattatray J Late
{"title":"Surface modification of biomass-derived self-supported carbon nano network as an emerging platform for advanced field emitter devices and supercapacitor applications","authors":"Pallavi Mutadak, Amol Vedpathak, Sambhaji Warule, Nilima Chaudhari, Shrikrishna Dattatraya Sartale, Mahendra A More, Dattatray J Late","doi":"10.1039/d4nh00314d","DOIUrl":"https://doi.org/10.1039/d4nh00314d","url":null,"abstract":"Herein, a self-supported carbon network is designed through the sole pyrolysis of Carica papaya seeds (biomass) without any activation agent and demonstrates their field emission and supercapacitor applications. The pyrolysis of seeds in the argon atmosphere leads to the formation of interconnected, rod-like structures. Furthermore, the hydrofluoric acid treatment not only removed the impurities but also resulted in the formation of CaF2 nanocrystals with the addition of F-doping. From the field emission studies, the turn-on field values defined at an emission current density of ~ 10 µA/cm2 were found to be ~2.16 and 1.21 V/µm for as-prepared carbon and F-doped carbon, respectively. Notably, F-doped carbon exhibits a high emission current density of ~9.49 mA/cm2 and has been drawn at an electric field of ~2.29 V/µm. The supercapacitor studies were carried out to demonstrate the multi-functionality of the prepared materials. The F-doped carbon electrode material exhibits the highest specific capacitance of 234 F g−1 at 0.5 A g−1. To demonstrate the actual supercapacitor application, the HFC // HFC symmetric coin cell supercapacitor device was assembled. The overall multifunctional applicability of the fabricated hybrid structures provides a futuristic approach to field emission and energy storage applications.","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142210543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene-based microelectrodes with bidirectional functionality for next-generation retinal electronic interfaces. 用于下一代视网膜电子接口的具有双向功能的石墨烯基微电极。
IF 8 2区 材料科学
Nanoscale Horizons Pub Date : 2024-09-04 DOI: 10.1039/d4nh00282b
Fikret Taygun Duvan, Marina Cunquero, Eduard Masvidal-Codina, Steven T Walston, Maria Marsal, Jose Manuel de la Cruz, Damia Viana, Diep Nguyen, Julie Degardin, Xavi Illa, Julie M Zhang, Maria Del Pilar Bernícola, José Gabriel Macias-Montero, Carles Puigdengoles, Gustavo Castro-Olvera, Elena Del Corro, Socrates Dokos, Mokhtar Chmeissani, Pablo Loza-Alvarez, Serge Picaud, Jose A Garrido
{"title":"Graphene-based microelectrodes with bidirectional functionality for next-generation retinal electronic interfaces.","authors":"Fikret Taygun Duvan, Marina Cunquero, Eduard Masvidal-Codina, Steven T Walston, Maria Marsal, Jose Manuel de la Cruz, Damia Viana, Diep Nguyen, Julie Degardin, Xavi Illa, Julie M Zhang, Maria Del Pilar Bernícola, José Gabriel Macias-Montero, Carles Puigdengoles, Gustavo Castro-Olvera, Elena Del Corro, Socrates Dokos, Mokhtar Chmeissani, Pablo Loza-Alvarez, Serge Picaud, Jose A Garrido","doi":"10.1039/d4nh00282b","DOIUrl":"10.1039/d4nh00282b","url":null,"abstract":"<p><p>Neuroelectronic prostheses are being developed for restoring vision at the retinal level in patients who have lost their sight due to photoreceptor loss. The core component of these devices is the electrode array, which enables interfacing with retinal neurons. Generating the perception of meaningful images requires high-density microelectrode arrays (MEAs) capable of precisely activating targeted retinal neurons. Achieving this precision necessitates the downscaling of electrodes to micrometer dimensions. However, miniaturization increases electrode impedance, which poses challenges by limiting the amount of current that can be delivered, thereby impairing the electrode's capability for effective neural modulation. Additionally, it elevates noise levels, reducing the signal quality of the recorded neural activity. This report focuses on evaluating reduced graphene oxide (rGO) based devices for interfacing with the retina, showcasing their potential in vision restoration. Our findings reveal low impedance and high charge injection limit for microscale rGO electrodes, confirming their suitability for developing next-generation high-density retinal devices. We successfully demonstrated bidirectional interfacing with cell cultures and explanted retinal tissue, enabling the identification and modulation of multiple cells' activity. Additionally, calcium imaging allowed real-time monitoring of retinal cell dynamics, demonstrating a significant reduction in activated areas with small-sized electrodes. Overall, this study lays the groundwork for developing advanced rGO-based MEAs for high-acuity visual prostheses.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering in situ growth of Au nanoclusters on hydrophilic paper fibres for fluorescence calligraphy-based chemical logic gates and information encryption. 在亲水性纸纤维上原位生长金纳米团簇,用于基于荧光书法的化学逻辑门和信息加密。
IF 8 2区 材料科学
Nanoscale Horizons Pub Date : 2024-09-03 DOI: 10.1039/d4nh00307a
Jun Jiang Luo, Dun Ying Guo, Zi Bo Qu, Hong Qun Luo, Nian Bing Li, Hao Lin Zou, Bang Lin Li
{"title":"Engineering <i>in situ</i> growth of Au nanoclusters on hydrophilic paper fibres for fluorescence calligraphy-based chemical logic gates and information encryption.","authors":"Jun Jiang Luo, Dun Ying Guo, Zi Bo Qu, Hong Qun Luo, Nian Bing Li, Hao Lin Zou, Bang Lin Li","doi":"10.1039/d4nh00307a","DOIUrl":"https://doi.org/10.1039/d4nh00307a","url":null,"abstract":"<p><p>Gold nanoclusters (AuNCs) are a type of rising-star fluorescence nanomaterials, but their properties and applications are hindered by the multi-step synthesis and purification routes, as well as the lack of desired supporting substrates. To enhance optical performance and working efficiency, the synthesis and applications of AuNCs are suggested to be merged with emerging substrates. Herein, glutathione-modified hydrophilic rice papers are incubated in chloroauric acid aqueous solutions, and the oxidation-reduction reaction between glutathione and Au ions enables the <i>in situ</i> formation of fluorescent AuNCs on the solid fibres of rice papers. The <i>in situ</i> growth of fluorescent AuNCs on rice papers resulted in eye-catching fluorescence tracks, similar to traditional Chinese conventional calligraphy; thus, this fluoresence calligraphy is defined in this work. The entire process, including synthesis and signal responses, is extremely simple, rapid, and repeatable. Moreover, the diversity of additive chemical reagents in the studied rice papers resulted in responsive fluorescence calligraphy, and the as-synthesized AuNC materials exhibited high reliability and optical stability. Significantly, with the integration of synchronous formation and application of Au nanoclusters on hydrophilic paper substrates, high-performance logical gates and information encryption systems were constructed, remarkably facilitating the progress of molecular sensing and important information transmission.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ov-rich γ-MnO2 enhanced electrocatalytic three-electron oxygen reduction to hydroxyl radicals for sterilization in neutral media. 富含 Ov 的 γ-MnO2 增强了电催化三电子氧还原为羟基自由基的能力,可在中性介质中杀菌。
IF 8 2区 材料科学
Nanoscale Horizons Pub Date : 2024-09-03 DOI: 10.1039/d4nh00289j
Yingnan Qin, Tongzhu Han, Ligang Chen, Kexin Yan, Jing Wang, Ning Wang, Baorong Hou
{"title":"O<sub>v</sub>-rich γ-MnO<sub>2</sub> enhanced electrocatalytic three-electron oxygen reduction to hydroxyl radicals for sterilization in neutral media.","authors":"Yingnan Qin, Tongzhu Han, Ligang Chen, Kexin Yan, Jing Wang, Ning Wang, Baorong Hou","doi":"10.1039/d4nh00289j","DOIUrl":"https://doi.org/10.1039/d4nh00289j","url":null,"abstract":"<p><p>Marine biofouling severely limits the development of the marine economy, and reactive oxygen species (ROS) produced by electrocatalytic antifouling techniques could inactivate marine microorganisms and inhibit the formation of marine biofouling. Compared with an electro-Fenton reaction, a three-electron oxygen reduction reaction (3e<sup>-</sup> ORR) could generate a hydroxyl radical (˙OH) <i>in situ</i> without the limitation of pH and iron mud pollutants. Herein, O<sub>v</sub>-rich γ-MnO<sub>2</sub> is designed to enhance the 3e<sup>-</sup> ORR performance in neutral media and exhibits excellent sterilization performance for typical marine bacteria. DFT calculation reveals that O<sub>v</sub> is beneficial to the \"end-on\" adsorption and activation of O<sub>2</sub>, and the Mn site could accept the electrons from *OOH and promote its further reduction to form ˙OH; O<sub>v</sub> and Mn sites together guarantee the high 3e<sup>-</sup> ORR efficiency. In addition, liquid chromatography-tandem mass spectrometry (LC-MS/MS) proves the vast formation of ˙OH in the primary reaction stage, which is the key to sterilization. This work explores the reaction mechanism of the 3e<sup>-</sup> ORR in neutral media and provides the possibility for the application of electrocatalysis technology in the treatment of marine biofouling pollution.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":null,"pages":null},"PeriodicalIF":8.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信