{"title":"多孔硅生物传感器满足两性离子肽:解决从蛋白质到细胞的生物污垢。","authors":"Kayan Awawdeh, Xin Jiang, Lisa Dahan, Matan Atias, Janina Bahnemann, Ester Segal","doi":"10.1039/d5nh00478k","DOIUrl":null,"url":null,"abstract":"<p><p>Porous silicon (PSi)-based biosensors are promising platforms for label-free biomarker detection in complex environments, including potential <i>in vivo</i> applications, but their use remains limited due to their susceptibility to biofouling caused by their high surface area. Here, we address this challenge by covalently immobilizing zwitterionic peptides with glutamic acid (E) and lysine (K) repeating motifs onto PSi thin films. Systematic screening identified a specific sequence, EKEKEKEKEKGGC, which exhibited superior antibiofouling properties compared to conventional polyethylene glycol (PEG) coatings. This peptide effectively prevented nonspecific adsorption of biomolecules from complex biofluids, including gastrointestinal (GI) fluid and bacterial lysate. Applying this strategy to a PSi-based aptasensor for lactoferrin detection, we achieved more than one order of magnitude improvement in both the limit of detection and (LOD) and signal to noise ratio over PEG-passivated sensors, enabling sensitive detection in clinically relevant concentration ranges. The peptide's antibiofouling performance was also extended to biofilm-forming bacteria and adherent mammalian cells, underscoring its broad-spectrum protection against both molecular and cellular contamination. This universal strategy enhances the reliability of PSi biosensors by addressing a key cause of sensor failure in real-world applications.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porous silicon biosensors meet zwitterionic peptides: tackling biofouling from proteins to cells.\",\"authors\":\"Kayan Awawdeh, Xin Jiang, Lisa Dahan, Matan Atias, Janina Bahnemann, Ester Segal\",\"doi\":\"10.1039/d5nh00478k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Porous silicon (PSi)-based biosensors are promising platforms for label-free biomarker detection in complex environments, including potential <i>in vivo</i> applications, but their use remains limited due to their susceptibility to biofouling caused by their high surface area. Here, we address this challenge by covalently immobilizing zwitterionic peptides with glutamic acid (E) and lysine (K) repeating motifs onto PSi thin films. Systematic screening identified a specific sequence, EKEKEKEKEKGGC, which exhibited superior antibiofouling properties compared to conventional polyethylene glycol (PEG) coatings. This peptide effectively prevented nonspecific adsorption of biomolecules from complex biofluids, including gastrointestinal (GI) fluid and bacterial lysate. Applying this strategy to a PSi-based aptasensor for lactoferrin detection, we achieved more than one order of magnitude improvement in both the limit of detection and (LOD) and signal to noise ratio over PEG-passivated sensors, enabling sensitive detection in clinically relevant concentration ranges. The peptide's antibiofouling performance was also extended to biofilm-forming bacteria and adherent mammalian cells, underscoring its broad-spectrum protection against both molecular and cellular contamination. This universal strategy enhances the reliability of PSi biosensors by addressing a key cause of sensor failure in real-world applications.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nh00478k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00478k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Porous silicon biosensors meet zwitterionic peptides: tackling biofouling from proteins to cells.
Porous silicon (PSi)-based biosensors are promising platforms for label-free biomarker detection in complex environments, including potential in vivo applications, but their use remains limited due to their susceptibility to biofouling caused by their high surface area. Here, we address this challenge by covalently immobilizing zwitterionic peptides with glutamic acid (E) and lysine (K) repeating motifs onto PSi thin films. Systematic screening identified a specific sequence, EKEKEKEKEKGGC, which exhibited superior antibiofouling properties compared to conventional polyethylene glycol (PEG) coatings. This peptide effectively prevented nonspecific adsorption of biomolecules from complex biofluids, including gastrointestinal (GI) fluid and bacterial lysate. Applying this strategy to a PSi-based aptasensor for lactoferrin detection, we achieved more than one order of magnitude improvement in both the limit of detection and (LOD) and signal to noise ratio over PEG-passivated sensors, enabling sensitive detection in clinically relevant concentration ranges. The peptide's antibiofouling performance was also extended to biofilm-forming bacteria and adherent mammalian cells, underscoring its broad-spectrum protection against both molecular and cellular contamination. This universal strategy enhances the reliability of PSi biosensors by addressing a key cause of sensor failure in real-world applications.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.