Simon Spelthann, Lea Koetters, Rajesh Komban, Christoph Gimmler, Michael Steinke
{"title":"通过多强度比和符号回归对比例发光纳米热测量中功率依赖性的明确校正。","authors":"Simon Spelthann, Lea Koetters, Rajesh Komban, Christoph Gimmler, Michael Steinke","doi":"10.1039/d5nh00323g","DOIUrl":null,"url":null,"abstract":"<p><p>Ratiometric luminescence nanothermometry carries the potential to measure temperature in situations for which established methods are unsuitable. The precision of nanothermometry depends on the excitation power, so calibration and monitoring of the optical power is mandatory-a requirement that complicates optical setups and limits nanothermometry in scenarios where precise power control or measurement is impractical or unfeasible. Here, we use Er<sup>3+</sup>-activated nanothermometers and, besides the well-known 525/545 nm ratio, define a second luminescence intensity ratio involving the emission at 660 nm to achieve a power-calibration-free nanothermometry. The intensity of this emission is strongly correlated with the power and is available anyways when using standard spectroscopic instrumentation. We apply symbolic regression to find an unambiguous mathematical expression that describes the experimental data. From this mathematical expression, we determine the mean temperature deviation resulting from the fitting error to be 0.16 K and a maximum temperature precision as small as 6 mK (0.22 K on average). In summary, our approach makes excitation power measurements in ratiometric luminescent nanothermometry superfluous.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unambiguous calibration of power dependence in ratiometric luminescent nanothermometry through multiple intensity ratios and symbolic regression.\",\"authors\":\"Simon Spelthann, Lea Koetters, Rajesh Komban, Christoph Gimmler, Michael Steinke\",\"doi\":\"10.1039/d5nh00323g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ratiometric luminescence nanothermometry carries the potential to measure temperature in situations for which established methods are unsuitable. The precision of nanothermometry depends on the excitation power, so calibration and monitoring of the optical power is mandatory-a requirement that complicates optical setups and limits nanothermometry in scenarios where precise power control or measurement is impractical or unfeasible. Here, we use Er<sup>3+</sup>-activated nanothermometers and, besides the well-known 525/545 nm ratio, define a second luminescence intensity ratio involving the emission at 660 nm to achieve a power-calibration-free nanothermometry. The intensity of this emission is strongly correlated with the power and is available anyways when using standard spectroscopic instrumentation. We apply symbolic regression to find an unambiguous mathematical expression that describes the experimental data. From this mathematical expression, we determine the mean temperature deviation resulting from the fitting error to be 0.16 K and a maximum temperature precision as small as 6 mK (0.22 K on average). In summary, our approach makes excitation power measurements in ratiometric luminescent nanothermometry superfluous.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nh00323g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00323g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Unambiguous calibration of power dependence in ratiometric luminescent nanothermometry through multiple intensity ratios and symbolic regression.
Ratiometric luminescence nanothermometry carries the potential to measure temperature in situations for which established methods are unsuitable. The precision of nanothermometry depends on the excitation power, so calibration and monitoring of the optical power is mandatory-a requirement that complicates optical setups and limits nanothermometry in scenarios where precise power control or measurement is impractical or unfeasible. Here, we use Er3+-activated nanothermometers and, besides the well-known 525/545 nm ratio, define a second luminescence intensity ratio involving the emission at 660 nm to achieve a power-calibration-free nanothermometry. The intensity of this emission is strongly correlated with the power and is available anyways when using standard spectroscopic instrumentation. We apply symbolic regression to find an unambiguous mathematical expression that describes the experimental data. From this mathematical expression, we determine the mean temperature deviation resulting from the fitting error to be 0.16 K and a maximum temperature precision as small as 6 mK (0.22 K on average). In summary, our approach makes excitation power measurements in ratiometric luminescent nanothermometry superfluous.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.