Ting Mao, Quy Ong, Joachim Kohlbrecher, Ekaterina Poliukhina, Paulo Jacob Silva, Francesco Stellacci
{"title":"脯氨酸通过疏水相互作用稳定两亲性金纳米粒子。","authors":"Ting Mao, Quy Ong, Joachim Kohlbrecher, Ekaterina Poliukhina, Paulo Jacob Silva, Francesco Stellacci","doi":"10.1039/d5nh00260e","DOIUrl":null,"url":null,"abstract":"<p><p>Colloidal dispersions are key in many fields of science and technology. Recently, we have shown that small molecules can stabilize dispersions of nanoscale objects, such as proteins and nanoparticles by screening their net attractive interactions. This new effect is essentially the opposite of the well-known salt screening of electrostatic interaction. Here we show that small molecule stabilization of nanoparticles is a phenomenon strongly linked to the hydrophobic content of the particles as well as to the strength of their hydrophobic attraction. We compare the effect of proline on gold nanoparticles coated with 11-mercaptoundecane sulfonate (MUS) at varying percentages of the hydrophobic ligand octanethiol (OT). We show that the larger the percentage of OT, the larger the proline stabilization effect is. We also compare the effect of proline on water dispersions of nanoparticles with that on heavy water dispersions. In the latter, the hydrophobic effect plays a bigger role. We find that in D<sub>2</sub>O, proline stabilization is larger. We also compare the effect of proline on the same MUS:OT gold nanoparticles before and after an annealing process that is known to render the particle more hydrophilic. Proline is more effective on the particles before annealing. Finally, we study the effect of proline on non-aggregating allMUS nanoparticles. We find that proline stabilization of these particles is mainly due to a reduction in the long-range attraction coefficient. Overall, we show that proline stabilizes nanoparticle dispersions more effectively as the hydrophobic attraction between nanoparticles increases.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12439247/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proline stabilizes amphiphilic gold nanoparticles <i>via</i> hydrophobic interactions.\",\"authors\":\"Ting Mao, Quy Ong, Joachim Kohlbrecher, Ekaterina Poliukhina, Paulo Jacob Silva, Francesco Stellacci\",\"doi\":\"10.1039/d5nh00260e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colloidal dispersions are key in many fields of science and technology. Recently, we have shown that small molecules can stabilize dispersions of nanoscale objects, such as proteins and nanoparticles by screening their net attractive interactions. This new effect is essentially the opposite of the well-known salt screening of electrostatic interaction. Here we show that small molecule stabilization of nanoparticles is a phenomenon strongly linked to the hydrophobic content of the particles as well as to the strength of their hydrophobic attraction. We compare the effect of proline on gold nanoparticles coated with 11-mercaptoundecane sulfonate (MUS) at varying percentages of the hydrophobic ligand octanethiol (OT). We show that the larger the percentage of OT, the larger the proline stabilization effect is. We also compare the effect of proline on water dispersions of nanoparticles with that on heavy water dispersions. In the latter, the hydrophobic effect plays a bigger role. We find that in D<sub>2</sub>O, proline stabilization is larger. We also compare the effect of proline on the same MUS:OT gold nanoparticles before and after an annealing process that is known to render the particle more hydrophilic. Proline is more effective on the particles before annealing. Finally, we study the effect of proline on non-aggregating allMUS nanoparticles. We find that proline stabilization of these particles is mainly due to a reduction in the long-range attraction coefficient. Overall, we show that proline stabilizes nanoparticle dispersions more effectively as the hydrophobic attraction between nanoparticles increases.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12439247/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nh00260e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00260e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Proline stabilizes amphiphilic gold nanoparticles via hydrophobic interactions.
Colloidal dispersions are key in many fields of science and technology. Recently, we have shown that small molecules can stabilize dispersions of nanoscale objects, such as proteins and nanoparticles by screening their net attractive interactions. This new effect is essentially the opposite of the well-known salt screening of electrostatic interaction. Here we show that small molecule stabilization of nanoparticles is a phenomenon strongly linked to the hydrophobic content of the particles as well as to the strength of their hydrophobic attraction. We compare the effect of proline on gold nanoparticles coated with 11-mercaptoundecane sulfonate (MUS) at varying percentages of the hydrophobic ligand octanethiol (OT). We show that the larger the percentage of OT, the larger the proline stabilization effect is. We also compare the effect of proline on water dispersions of nanoparticles with that on heavy water dispersions. In the latter, the hydrophobic effect plays a bigger role. We find that in D2O, proline stabilization is larger. We also compare the effect of proline on the same MUS:OT gold nanoparticles before and after an annealing process that is known to render the particle more hydrophilic. Proline is more effective on the particles before annealing. Finally, we study the effect of proline on non-aggregating allMUS nanoparticles. We find that proline stabilization of these particles is mainly due to a reduction in the long-range attraction coefficient. Overall, we show that proline stabilizes nanoparticle dispersions more effectively as the hydrophobic attraction between nanoparticles increases.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.