Jie Zhao, Fernando Buendia-Zamudio, Sergey M Kozlov
{"title":"Boron atom incorporation into metal nanoparticles.","authors":"Jie Zhao, Fernando Buendia-Zamudio, Sergey M Kozlov","doi":"10.1039/d5nh00332f","DOIUrl":null,"url":null,"abstract":"<p><p>Boron can become unintentionally incorporated into transition metals during the reduction of metal salts with borohydride. The presence of boron at the surfaces of transition metals (TMs) such as Pd and Pt is known to significantly influence their catalytic properties. In this study, we employ density functional (DFT) calculations to investigate the thermodynamics and kinetics of boron incorporation into ∼1.5 nm particles and extended (111) surfaces of fcc-Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, and Al. Our results reveal that boron exhibits high thermodynamic stability in interstitial subsurface sites on (111) surfaces and nanoparticles of Rh, Pt, and Pd. Unlike extended surfaces, metal nanoparticles (NPs) can also stabilize boron within the coordination environment of surface metal atoms, with such sites being particularly stable in Rh, Ir, and Ni nanoparticles. Furthermore, the energy barriers for B migration at NP edge sites from the surface to subsurface decrease to <0.5 eV (for all metals except Ir), and the migration barrier for boron incorporation into the in-surface sites is lower than 0.2 eV. Notably, B incorporation induces a shift in the d-band center of adjacent metal atoms, which indicates its pronounced impact on the catalytic activity of transition metals.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00332f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Boron can become unintentionally incorporated into transition metals during the reduction of metal salts with borohydride. The presence of boron at the surfaces of transition metals (TMs) such as Pd and Pt is known to significantly influence their catalytic properties. In this study, we employ density functional (DFT) calculations to investigate the thermodynamics and kinetics of boron incorporation into ∼1.5 nm particles and extended (111) surfaces of fcc-Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, and Al. Our results reveal that boron exhibits high thermodynamic stability in interstitial subsurface sites on (111) surfaces and nanoparticles of Rh, Pt, and Pd. Unlike extended surfaces, metal nanoparticles (NPs) can also stabilize boron within the coordination environment of surface metal atoms, with such sites being particularly stable in Rh, Ir, and Ni nanoparticles. Furthermore, the energy barriers for B migration at NP edge sites from the surface to subsurface decrease to <0.5 eV (for all metals except Ir), and the migration barrier for boron incorporation into the in-surface sites is lower than 0.2 eV. Notably, B incorporation induces a shift in the d-band center of adjacent metal atoms, which indicates its pronounced impact on the catalytic activity of transition metals.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.