Multilevel storage and linear optoelectronic response in mixed-dimensional photomemories.

IF 6.6 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Chen-Yo Tsai, Dun-Jie Jhan, Che-Ming Wu, Ming-Pei Lu, Ming-Yen Lu
{"title":"Multilevel storage and linear optoelectronic response in mixed-dimensional photomemories.","authors":"Chen-Yo Tsai, Dun-Jie Jhan, Che-Ming Wu, Ming-Pei Lu, Ming-Yen Lu","doi":"10.1039/d5nh00397k","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid evolution of artificial intelligence (AI) computing demands innovative memory technologies that integrate high-speed processing with energy-efficient data storage. Here, we report a mixed-dimensional photomemory device based on a CsPbBr<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>/MoS<sub>2</sub> architecture, leveraging perovskite quantum dots (PQDs) as a photoactive floating-gate layer, a tunable Al<sub>2</sub>O<sub>3</sub> dielectric, and a 2D MoS<sub>2</sub> channel. Optical and electrical characterization studies, including steady-state and time-resolved photoluminescence (PL), Kelvin probe force microscopy (KPFM), and current-voltage measurements, reveal the interplay of dielectric thickness and interfacial effects in governing charge transfer efficiency. By optimizing the Al<sub>2</sub>O<sub>3</sub> thickness to 5.5 nm, we achieve precise control over charge transfer dynamics, enabling an optimal charge transfer rate with minimal optical energy (∼sub-pJ) to store a single positive charge in the PQDs. The device exhibits exceptional optoelectronic performance, including a nearly linear correlation between incident photon number and average photocurrent (<i>I</i><sub>ph(avg)</sub>) over two orders of magnitude, multilevel storage capability, and a memory window with a high on/off ratio. These findings establish a robust platform for next-generation perovskite-based photomemories, offering insights into energy-efficient, high-performance optoelectronic systems for advanced AI chip applications.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00397k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid evolution of artificial intelligence (AI) computing demands innovative memory technologies that integrate high-speed processing with energy-efficient data storage. Here, we report a mixed-dimensional photomemory device based on a CsPbBr3/Al2O3/MoS2 architecture, leveraging perovskite quantum dots (PQDs) as a photoactive floating-gate layer, a tunable Al2O3 dielectric, and a 2D MoS2 channel. Optical and electrical characterization studies, including steady-state and time-resolved photoluminescence (PL), Kelvin probe force microscopy (KPFM), and current-voltage measurements, reveal the interplay of dielectric thickness and interfacial effects in governing charge transfer efficiency. By optimizing the Al2O3 thickness to 5.5 nm, we achieve precise control over charge transfer dynamics, enabling an optimal charge transfer rate with minimal optical energy (∼sub-pJ) to store a single positive charge in the PQDs. The device exhibits exceptional optoelectronic performance, including a nearly linear correlation between incident photon number and average photocurrent (Iph(avg)) over two orders of magnitude, multilevel storage capability, and a memory window with a high on/off ratio. These findings establish a robust platform for next-generation perovskite-based photomemories, offering insights into energy-efficient, high-performance optoelectronic systems for advanced AI chip applications.

混合维光电存储器中的多能级存储和线性光电响应。
人工智能(AI)计算的快速发展需要创新的存储技术,将高速处理与节能数据存储相结合。在这里,我们报道了一种基于CsPbBr3/Al2O3/MoS2架构的混合维光电存储器器件,利用钙钛矿量子点(PQDs)作为光活性浮栅层,可调谐Al2O3介电层和2D MoS2通道。光学和电学表征研究,包括稳态和时间分辨光致发光(PL)、开尔文探针力显微镜(KPFM)和电流-电压测量,揭示了介电厚度和界面效应在控制电荷转移效率方面的相互作用。通过将Al2O3厚度优化到5.5 nm,我们实现了对电荷转移动力学的精确控制,实现了以最小光能(~亚pj)在pqd中存储单个正电荷的最佳电荷转移速率。该器件具有优异的光电性能,包括入射光子数与平均光电流(Iph(avg))之间的近线性相关关系超过两个数量级,多电平存储能力以及具有高开/关比的存储窗口。这些发现为下一代基于钙钛矿的光电存储器建立了一个强大的平台,为先进的人工智能芯片应用提供了节能、高性能光电系统的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信