硼原子与金属纳米颗粒的结合。

IF 6.6 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jie Zhao, Fernando Buendia-Zamudio, Sergey M Kozlov
{"title":"硼原子与金属纳米颗粒的结合。","authors":"Jie Zhao, Fernando Buendia-Zamudio, Sergey M Kozlov","doi":"10.1039/d5nh00332f","DOIUrl":null,"url":null,"abstract":"<p><p>Boron can become unintentionally incorporated into transition metals during the reduction of metal salts with borohydride. The presence of boron at the surfaces of transition metals (TMs) such as Pd and Pt is known to significantly influence their catalytic properties. In this study, we employ density functional (DFT) calculations to investigate the thermodynamics and kinetics of boron incorporation into ∼1.5 nm particles and extended (111) surfaces of fcc-Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, and Al. Our results reveal that boron exhibits high thermodynamic stability in interstitial subsurface sites on (111) surfaces and nanoparticles of Rh, Pt, and Pd. Unlike extended surfaces, metal nanoparticles (NPs) can also stabilize boron within the coordination environment of surface metal atoms, with such sites being particularly stable in Rh, Ir, and Ni nanoparticles. Furthermore, the energy barriers for B migration at NP edge sites from the surface to subsurface decrease to <0.5 eV (for all metals except Ir), and the migration barrier for boron incorporation into the in-surface sites is lower than 0.2 eV. Notably, B incorporation induces a shift in the d-band center of adjacent metal atoms, which indicates its pronounced impact on the catalytic activity of transition metals.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boron atom incorporation into metal nanoparticles.\",\"authors\":\"Jie Zhao, Fernando Buendia-Zamudio, Sergey M Kozlov\",\"doi\":\"10.1039/d5nh00332f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Boron can become unintentionally incorporated into transition metals during the reduction of metal salts with borohydride. The presence of boron at the surfaces of transition metals (TMs) such as Pd and Pt is known to significantly influence their catalytic properties. In this study, we employ density functional (DFT) calculations to investigate the thermodynamics and kinetics of boron incorporation into ∼1.5 nm particles and extended (111) surfaces of fcc-Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, and Al. Our results reveal that boron exhibits high thermodynamic stability in interstitial subsurface sites on (111) surfaces and nanoparticles of Rh, Pt, and Pd. Unlike extended surfaces, metal nanoparticles (NPs) can also stabilize boron within the coordination environment of surface metal atoms, with such sites being particularly stable in Rh, Ir, and Ni nanoparticles. Furthermore, the energy barriers for B migration at NP edge sites from the surface to subsurface decrease to <0.5 eV (for all metals except Ir), and the migration barrier for boron incorporation into the in-surface sites is lower than 0.2 eV. Notably, B incorporation induces a shift in the d-band center of adjacent metal atoms, which indicates its pronounced impact on the catalytic activity of transition metals.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nh00332f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00332f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在硼氢化物还原金属盐的过程中,硼可以无意中掺入过渡金属中。硼在过渡金属(如Pd和Pt)表面的存在对其催化性能有显著影响。在这项研究中,我们使用密度泛函(DFT)计算来研究硼在fcc-Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au和Al的1.5 nm颗粒和延伸(111)表面的热力学和动力学。我们的结果表明,硼在(111)表面和Rh、Pt和Pd纳米颗粒的间隙亚表面位置表现出很高的热力学稳定性。与扩展表面不同,金属纳米颗粒(NPs)也可以在表面金属原子的配位环境中稳定硼,这些位点在Rh、Ir和Ni纳米颗粒中特别稳定。此外,B在NP边缘位置从地表向地下迁移的能垒降低到
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boron atom incorporation into metal nanoparticles.

Boron can become unintentionally incorporated into transition metals during the reduction of metal salts with borohydride. The presence of boron at the surfaces of transition metals (TMs) such as Pd and Pt is known to significantly influence their catalytic properties. In this study, we employ density functional (DFT) calculations to investigate the thermodynamics and kinetics of boron incorporation into ∼1.5 nm particles and extended (111) surfaces of fcc-Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, and Al. Our results reveal that boron exhibits high thermodynamic stability in interstitial subsurface sites on (111) surfaces and nanoparticles of Rh, Pt, and Pd. Unlike extended surfaces, metal nanoparticles (NPs) can also stabilize boron within the coordination environment of surface metal atoms, with such sites being particularly stable in Rh, Ir, and Ni nanoparticles. Furthermore, the energy barriers for B migration at NP edge sites from the surface to subsurface decrease to <0.5 eV (for all metals except Ir), and the migration barrier for boron incorporation into the in-surface sites is lower than 0.2 eV. Notably, B incorporation induces a shift in the d-band center of adjacent metal atoms, which indicates its pronounced impact on the catalytic activity of transition metals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信