{"title":"Performance improvement of triple-doped nanocomposite membrane towards hairwork dyeing effluent reclamation approaching zero liquid discharge","authors":"Yu Liu, Yuefei Song, Chunchun Meng, Zuqiong Jiang, Junhao Zhao, Yanan Wang, Kai Jiang","doi":"10.1016/j.chemosphere.2024.143725","DOIUrl":"10.1016/j.chemosphere.2024.143725","url":null,"abstract":"<div><div>It is highly anticipated that efforts will be made to raise the level of industrial effluent reclamation on the background of continuously minimizing waste stream based on preconcentration tool. For this purpose, a triple-doped nanocomposite (TFN-tri) membrane through partially alternative doping spiro-structured 2,2′-dimethyl-1,1′-biphenyl-4,4′-diamine dihydrochloride and flexible 4,4′-bipiperidyl dihydrochloride and continuous incorporating of molybdenum disulfide quantum dots was successfully fabricated. With the assistance of self-synthesized biodegradable flocculant pretreatment, raw hairwork dyeing effluent (HDE) was stably recycled up to 95.1% on the premise of meeting the requirements of the relevant national standard. As a deep processing unit, TFN-tri membrane displayed accurate salt rejection of nearly 66% as expected. More impressively, it also exhibited permeability basically increased by 2.5 folds, while fouling layer thickness, running time and specific energy consumption decreased by 5 μm, 54.7% and 72.5%, respectively, than its counterpart in long-term reuse testing. These changes may mainly be due to the finely expand sub-nanopores coupled with an enhanced electrostatic exclusion and the improved fouling resistance brought about by other critical skin features in terms of smoothness and hydrophilicity optimization. In brief, this study has taken a vigorous and reliable step towards heavily polluted HDE reclamation approaching zero liquid discharge.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143725"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143460
Sebastian Kuehr , Boris Meisterjahn , Nicola Schroeder , Christian Schlechtriem , Kuria Ndungu , Anastasia Georgantzopoulou
{"title":"Evaluation of extraction and storage conditions for quantification and characterization of silver nanoparticles in complex samples by single particle-ICP-MS","authors":"Sebastian Kuehr , Boris Meisterjahn , Nicola Schroeder , Christian Schlechtriem , Kuria Ndungu , Anastasia Georgantzopoulou","doi":"10.1016/j.chemosphere.2024.143460","DOIUrl":"10.1016/j.chemosphere.2024.143460","url":null,"abstract":"<div><div>The extraction of nanoparticles (NPs) from complex matrices and subsequent storage can potentially alter the NPs physicochemical properties and hinder cross-study comparisons. Most NPs extraction methods are designed and tested at high NPs concentrations, although (eco)toxicological and regulatory monitoring programs require methods capable of analyzing NPs at environmentally relevant concentrations (lower ppb range). In this study, we investigated how extraction methods affect the characteristics of PVP coated and citrate-stabilized silver NPs (AgNPs) spiked into soil, sewage sludge, and biological samples at environmentally relevant concentrations using Single Particle Inductively Coupled Plasma Mass Spectrometry spICP-MS). Further we investigated the impact of storage temperature (-80 °C – 21 °C) and storage duration (1–28 days) on the particle characteristics such as particle size.</div><div>We found that aqueous AgNPs samples with low ionic strength media retained their original characteristics (like particle size, particle concentration and particle-based Ag mass) when preserved at 4 °C for up to 28 days. AgNPs dispersed in high ionic strength media were however better preserved at −80 °C. Among the extraction agents, tetrasodium pyrophosphate was efficient in extracting AgNPs from soil and sewage sludge matrices, while Proteinase K was most suitable for biological samples from organisms (earthworms or fish).</div><div>Although our study focused only on AgNPs, it provides crucial information to aid interlaboratory comparisons and data interpretation for (eco)toxicological studies.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143460"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CB[6]/ZnO chelated superoleophobic-hydrophilic PVDF membranes for one-step remediation of multi-contaminant in wastewater","authors":"Triparna Chakraborty , Dharmveer Yadav , Lokesh Kumar Sahu , Manoj Kumar Pandey , Sumit Saxena , Shobha Shukla","doi":"10.1016/j.chemosphere.2024.143637","DOIUrl":"10.1016/j.chemosphere.2024.143637","url":null,"abstract":"<div><div>Industrial wastewater, despite undergoing primary and secondary treatments with conventional methods, continues to pose challenges due to the presence of multiple contaminants. Membrane separation has emerged as an effective solution to streamline the treatment process, yet it often results in surface fouling. This study introduces a single platform designed for simultaneous removal of dyes, oils, and proteins during the tertiary treatment stage, thereby eliminating the need for multiple separation steps. To enhance membrane robustness and address common fouling issues, polyvinylidene fluoride-montmorillonite-cucurbit[6]uril/zinc oxide (PV-M-CB[6]ZnO) mixed-matrix membranes have been developed. The incorporation of montmorillonite (M), cucurbit[6]uril (CB[6]) host-guest encapsulation, and zinc metal chelation significantly improves the membrane's capability in eliminating cationic dyes, treating oil-water emulsions, and separating bovine serum albumin. With an optimal CB[6]/ZnO loading of 1.6 wt%, the PV-M-CB[6]ZnO membranes exhibit superior performance with high water permeability (4114 L/m<sup>2</sup>.h.bar) and exceptional separation efficiencies: 95.5% for malachite green, 93.2% for methylene blue, and 98.2% for crystal violet, compared to pristine PVDF membranes. Additionally, these membranes demonstrate an impressive oil-water rejection rate of 97.6% and a bovine serum albumin rejection rate of 76%, with a flux recovery ratio exceeding 86% after seven filtration cycles. Thus, the PV-M-CB[6]ZnO membranes offer enhanced hydrophilicity, improved antifouling properties, and increased efficiency for the removal of multiple contaminants from industrial wastewater, providing a promising solution for sustainable environmental remediation.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143637"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143625
Jinrui Xiong , Siyuan Hu , Zhixiang Xu, Caiqing Li, Zihui Li, Siyuan Li, Yitao Ma, Xiaomin Ren, Bin Huang, Xuejun Pan
{"title":"Different paths, same destination: Bisphenol A and its substitute induce the conjugative transfer of antibiotic resistance genes","authors":"Jinrui Xiong , Siyuan Hu , Zhixiang Xu, Caiqing Li, Zihui Li, Siyuan Li, Yitao Ma, Xiaomin Ren, Bin Huang, Xuejun Pan","doi":"10.1016/j.chemosphere.2024.143625","DOIUrl":"10.1016/j.chemosphere.2024.143625","url":null,"abstract":"<div><div>Antibiotic resistance genes are primarily spread through horizontal gene transfer in aquatic environments. Bisphenols, which are widely used in industry, are pervasive contaminants in such environments. This study investigated how environmentally relevant concentrations of bisphenol A and its substitute (bisphenol S, Bisphenol AP and Bisphenol AF) affect the spread of antibiotic resistance genes among <em>Escherichia coli</em>. As a result, bisphenol A and its three substitutes were found to promote the RP4 plasmid-mediated conjugative transfer of antibiotic resistance genes with different promotive efficiency. Particularly, bisphenol A and bisphenol S were found to induce more than double the incidence of conjugation at 0.1 nmol/L concentration. They therefore were selected as model compounds to investigate the involved mechanisms. Surprisingly, both slightly inhibited bacterial activity, but there was no significant increase in cell death. Bisphenols exposure changed the polymeric substances excreted by the bacteria, increased the permeability of their cell membranes, induced the secretion of antioxidant enzymes and generated reactive oxygen species. They also affected the expression of genes related to conjugative transfer by upregulating replication and DNA transfer genes and downregulating global regulatory genes. It should be noted that gene expression levels were higher in the BPS-exposed group than in the BPA-exposed group. The synthesis of bacterial metabolites and functional components was also significantly affected by bisphenols exposure. This research has helped to clarify the potential health risks of bisphenol contamination of aquatic environments.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143625"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143702
I.F. Gosselink , F.J. van Schooten , M.J. Drittij , E.M. Höppener , P. Leonhardt , E. Moschini , T. Serchi , A.C. Gutleb , I.M. Kooter , A.H. Remels
{"title":"Assessing toxicity of amorphous nanoplastics in airway- and lung epithelial cells using air-liquid interface models","authors":"I.F. Gosselink , F.J. van Schooten , M.J. Drittij , E.M. Höppener , P. Leonhardt , E. Moschini , T. Serchi , A.C. Gutleb , I.M. Kooter , A.H. Remels","doi":"10.1016/j.chemosphere.2024.143702","DOIUrl":"10.1016/j.chemosphere.2024.143702","url":null,"abstract":"<div><h3>Background</h3><div>Inhalation is one of the main exposure routes to nanoplastics. Knowledge of the toxicological impact of nanoplastics on the airway- and lung epithelium is limited and almost exclusively based on submerged <em>in vitro</em> models using spherical polystyrene (PS) particles.</div></div><div><h3>Methods</h3><div>Mono-cultures and advanced (co-)cultures of human bronchial- and alveolar epithelial cells, all air-liquid interface (ALI) cultures, were exposed to nanoplastics and reference nanoparticles. Alveolar models included A549 mono-cultures and A549 cells co-cultured with endothelial cells (Ea.hy926) and macrophage-like cells (differentiated THP-1). Bronchial models included BEAS-2B cells and differentiated primary bronchial epithelial cells (PBEC). Cultures were exposed to PS, copper(II) oxide (CuO) or titanium dioxide (TiO<sub>2</sub>) nanoparticles (50 nm). Additionally, BEAS-2B cells were exposed to well-characterised, amorphous polyvinyl chloride (PVC), polypropylene (PP), or polyamide (PA) nanoplastics. Cytotoxicity and inflammation (IL-8 secretion and IL-8 transcript levels) were assessed after 24 h of exposure.</div></div><div><h3>Results</h3><div>Cell viability remained unaffected by all exposures in all models. Unlike PS and TiO<sub>2</sub>, CuO exposure dose-dependently induced IL-8 protein secretion and mRNA levels. Although the extent of IL-8 secretion differed between models, the relative response to CuO was similar in both mono-cultures and advanced (co-)cultures. None of the environmentally relevant nanoplastics (PVC, PA or PP) impacted inflammation or cell viability in BEAS-2B ALI cultures.</div></div><div><h3>Conclusion</h3><div>Although CuO induced inflammation, PS failed to elicit an inflammatory response in any of our models. For the first time, we show that PVC, PA and PP do not induce cell death or inflammation in a BEAS-2B ALI model.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143702"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143697
L. Benelhadj, P.A. Nortes-Tortosa, J.J. Alarcón, L. Ponce-Robles
{"title":"Impact of the use of different types of quaternary treated wastewater effluents in carrot crops growing: Uptake and accumulation of contaminants of emerging concern in soil-plant system and human health implications","authors":"L. Benelhadj, P.A. Nortes-Tortosa, J.J. Alarcón, L. Ponce-Robles","doi":"10.1016/j.chemosphere.2024.143697","DOIUrl":"10.1016/j.chemosphere.2024.143697","url":null,"abstract":"","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143697"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143723
Mengyao Zhu, Mingtao Hu, Wenyi Deng, Yaxin Su
{"title":"Preparation of red mud-modified sludge char through microwave-assisted one-step pyrolysis and steam activation and its adsorption properties for hydrogen sulfide","authors":"Mengyao Zhu, Mingtao Hu, Wenyi Deng, Yaxin Su","doi":"10.1016/j.chemosphere.2024.143723","DOIUrl":"10.1016/j.chemosphere.2024.143723","url":null,"abstract":"<div><div>To improve the hydrogen sulfide (H<sub>2</sub>S) adsorption performance of sludge-derived char, a type of red mud-modified sludge char (RSC) was prepared through microwave-assisted one-step pyrolysis and steam activation of sludge and red mud (RM). The effects of pyrolysis temperature, RM mass percentage, and steam flow rate on the cumulative adsorption capacity of H<sub>2</sub>S were systematically investigated using response surface method. The results indicated that the sludge char showed a significant increase in cumulative adsorption capacity from 1.47 mg/g to 22.83 mg/g when it was modified with RM at a pyrolysis temperature of 625 °C, a mass percentage of RM of 20%, and a steam flow rate of 0.46 mmol/min. The XRD and XPS analysis results indicated that the RM doping generated abundant iron oxides on the surface of RSC, which is beneficial for the adsorption of H<sub>2</sub>S. Adsorption thermodynamics, isotherm fitting and thermodynamic calculations indicate that the adsorption mechanism of H<sub>2</sub>S on the RSC surface was attributed to the combined effects of physisorption and chemisorption. Additionally, the material exhibited reliable reusability, retaining more than 80% of its initial breakthrough capacity after three adsorption-regeneration cycles. Therefore, the RSC prepared in this study can be regarded as a promising adsorbent due to its low cost, effective adsorption capabilities, and reusability. The developed method is promising as it achieves environmental remediation through the utilization of waste sludge and RM.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143723"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143712
Jingru Wei , Yulin Zheng , Lang Zhou , Kevin J. Kroll , Samuel M. Wallace , Nancy D. Denslow , Jean-François Gaillard , Jean-Claude J. Bonzongo
{"title":"Evaluating drinking water treatment residuals as an in-situ capping material for metal-contaminated sediments","authors":"Jingru Wei , Yulin Zheng , Lang Zhou , Kevin J. Kroll , Samuel M. Wallace , Nancy D. Denslow , Jean-François Gaillard , Jean-Claude J. Bonzongo","doi":"10.1016/j.chemosphere.2024.143712","DOIUrl":"10.1016/j.chemosphere.2024.143712","url":null,"abstract":"<div><div>This study evaluated drinking water treatment residuals (DWTR) as an in-situ capping material for metal-contaminated sediments using Gust-chamber experiments. Metal release from non-capped and DWTR-capped sediments was measured under increasing shear stress (τ) from 0.05 to 0.4 Pa. Fathead minnow (FHM) juveniles (<em>Pimephales promelas</em>) were exposed to water from these sediments in 96-h bioassays to assess DWTR's efficacy in reducing metal toxicity. Sand was used as an inert capping material for comparison. Diffusive gradients in thin films (DGT) assessed DWTR's impact on vertical metal concentration profiles in sediment pore water and overlying water, with concentrations determined by ICP-MS. Without capping, increasing τ raised metal concentrations in the overlying water from 45 to 95 mg/L for Cd and Zn, 4–10 mg/L for Cu, and 2–4 mg/L for Pb. Sand capping reduced these levels, with Cd and Zn ranging from 4 to 21 mg/L, Cu from 0.26 to 0.63 mg/L, and Pb from 0.051 to 0.23 mg/L. DWTR capping significantly lowered metal concentrations in the overlying water, with Cd ranging from 1 to 8 μg/L, Zn from 30 to 40 μg/L, Cu from 2.5 to 5 μg/L, and Pb from 1 to 2 μg/L. Therefore, beyond the physical barrier effect, the DWTR cap immobilizes metals through other mechanisms such as sorption and precipitation. Bioassays showed that DWTR significantly decreased metal toxicity to FHM, while sand-capped and non-capped sediments caused 100% mortality. DGT confirmed DWTR reduced metal fluxes at the sediment-water interface by up to two orders of magnitude.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143712"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143685
Nan Jia , Yue Shi , Jinyuan Qi , Weiwei Yang , Qingwei Bu , Ruiqing Zhao , Lei Yang , Jianfeng Tang
{"title":"Effects of dissolved organic matter from different sources on ritonavir photolysis","authors":"Nan Jia , Yue Shi , Jinyuan Qi , Weiwei Yang , Qingwei Bu , Ruiqing Zhao , Lei Yang , Jianfeng Tang","doi":"10.1016/j.chemosphere.2024.143685","DOIUrl":"10.1016/j.chemosphere.2024.143685","url":null,"abstract":"<div><div>With the misuse of antiviral drugs, the residual levels of ritonavir (RTV) in aquatic environments continue to increase, potentially posing threats to ecosystems and human health. However, the current understanding of the photochemical behavior of RTV in water, especially the mechanism by which dissolved organic matter (DOM) from different sources affects the indirect photolysis of RTV, remains limited. This study systematically investigated the effects of DOM from different sources (including sludge, algae, dustfall, and soil, namely SL-DOM, AL-DOM, DF-DOM, and SO-DOM, respectively) on the photodegradation of RTV for the first time. DOM exhibited a dual role in RTV degradation, with SL-DOM and AL-DOM accelerating the degradation process, while DF-DOM and SO-DOM inhibited it. Direct photolysis accounted for 40–53% of the overall photodegradation, underscoring its significant contribution to the degradation process. Quenching and competitive kinetics experiments revealed that <sup>3</sup>DOM<sup>⁎</sup> is the dominant contributor to the indirect photolysis of RTV. Exogenous DOM (DF-DOM, SO-DOM) exhibited higher generation rate and steady-state concentraiton of <sup>3</sup>DOM<sup>⁎</sup>, while endogenous DOM (SL-DOM, AL-DOM) exhibited higher quantum yields of <sup>3</sup>DOM<sup>⁎</sup> and reactivity, leading to distinct mechanisms for the indirect photodegradation of RTV. This study explored the effects of DOM from different sources on the photodegradation of RTV, providing important insights into how DOM affects the photochemical behavior and ecological risk of RTV. It also provides a reference for exploring the photochemical behavior of other drugs.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143685"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2024-11-01DOI: 10.1016/j.chemosphere.2024.143684
Guo-Ce An
{"title":"Enhancement of atmospheric nucleation precursors on formic sulfuric anhydride induced nucleation: Theoretical mechanism","authors":"Guo-Ce An","doi":"10.1016/j.chemosphere.2024.143684","DOIUrl":"10.1016/j.chemosphere.2024.143684","url":null,"abstract":"<div><div>As an intermediate formed by H<sub>2</sub>SO<sub>4</sub> (SA), formic sulfate anhydride (FSA) has been hypothesized to play a role in the nucleation of atmospheric aerosols. It is the first time that the clusters (SA)<sub><em>x</em></sub>(A)<sub><em>y</em></sub>(W)<sub><em>n</em></sub> and (FSA)<sub><em>x</em></sub>(A)<sub><em>y</em></sub>(W)<sub><em>n</em></sub> (<em>x</em> = 1–2; <em>y</em> = 1–2; <em>n</em> = 0–4) were systematically studied in theory on the structures, thermodynamics, intermolecular interactions, humidity dependence, atmospheric dependence and optical properties. FSA is predicted to be more stronger to promote the clustering with ammonia (A) than SA, suggesting that substituent group enhances nucleation capability of FSA. Whereas, the substituent group does not influence the humidity sensitivity of hydrated clusters. The clusters trend to form small hydrated clusters (<em>n</em><sub>water</sub>≦3). The study on atmospheric dependence indicates that the stability of the clusters depends more on temperature other than pressure. Moreover, FSA shows a stronger ability on reducing atmospheric visibility than A, SA and water molecules. This finding aims to draw attention to FSA about atmospheric nucleation.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"368 ","pages":"Article 143684"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}