Environmental Research Letters最新文献

筛选
英文 中文
Health benefits of decarbonization and clean air policies in Beijing and China. 北京和中国去碳化和清洁空气政策的健康效益。
IF 5.8 2区 环境科学与生态学
Environmental Research Letters Pub Date : 2024-12-01 Epub Date: 2024-11-15 DOI: 10.1088/1748-9326/ad8c65
Gregor Kiesewetter, Shaohui Zhang, Jun Liu
{"title":"Health benefits of decarbonization and clean air policies in Beijing and China.","authors":"Gregor Kiesewetter, Shaohui Zhang, Jun Liu","doi":"10.1088/1748-9326/ad8c65","DOIUrl":"10.1088/1748-9326/ad8c65","url":null,"abstract":"<p><p>Although China has seen strong reductions in air pollution levels in the last decade, PM<sub>2.5</sub> concentrations still exceed the WHO Guideline several times, causing a substantial burden of mortality and morbidity. With many 'low hanging fruits' in terms of abatement measures already taken, further improvements will be more difficult and likely require different strategies than pursued so far. This study looks into the trends expected under current energy policies and air pollution control legislation and analyses the source contributions to ambient PM<sub>2.5</sub> in China, with a special focus on the megacity of Beijing. Although reductions are foreseen, China appears not yet on track to meet its long-term targets for greenhouse gas emissions nor the future national air quality standards. Going beyond current policies, we analyze effects of measures which tackle both issues and quantify health co-benefits from further decarbonization policies required to meet the national target of reaching carbon neutrality by 2060, as well as the potential for further air pollution mitigation.</p>","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"19 12","pages":"124051"},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of COVID-19 pandemic on greenhouse gas and criteria air pollutant emissions from the San Pedro Bay Ports and future policy implications. COVID-19 大流行对圣佩德罗湾港口温室气体和标准空气污染物排放的影响及未来政策影响。
IF 5.8 2区 环境科学与生态学
Environmental Research Letters Pub Date : 2024-11-01 Epub Date: 2024-10-07 DOI: 10.1088/1748-9326/ad7747
Jiachen Zhang, Junhyeong Park, Nancy Bui, Sara Forestieri, Elizabeth Mazmanian, Yucheng He, Cory Parmer, David C Quiros
{"title":"Impact of COVID-19 pandemic on greenhouse gas and criteria air pollutant emissions from the San Pedro Bay Ports and future policy implications.","authors":"Jiachen Zhang, Junhyeong Park, Nancy Bui, Sara Forestieri, Elizabeth Mazmanian, Yucheng He, Cory Parmer, David C Quiros","doi":"10.1088/1748-9326/ad7747","DOIUrl":"https://doi.org/10.1088/1748-9326/ad7747","url":null,"abstract":"<p><p>The Ports of Los Angeles and Long Beach, collectively known as the San Pedro Bay Ports, serve as vital gateways for freight movement in the United States. The COVID-19 pandemic and other influencing factors disrupted freight movement and led to unprecedented cargo surge, vessel congestion, and increased air pollution and greenhouse gas emissions from seaport and connected freight system operations beginning in June 2020. In this study, we conducted the first comprehensive monthly assessment of the excess particulate matter, oxides of nitrogen (NO<sub>x</sub>), and carbon dioxide (CO<sub>2</sub>) emissions due to the heightened congestion and freight transport activity from ocean-going vessels (OGVs), trucks, locomotives, and cargo handling equipment (CHE) supporting seaport operations. Excess emissions peaked in October 2021 at 23 tons of NO<sub>x</sub> per day and 2001 tons of CO<sub>2</sub> per day. The strategic queuing system implemented in November 2021 significantly reduced the number of anchored and loitering OGVs and their emissions near the ports, even during continued high cargo throughput until Summer 2022. Looking forward, we analyzed projected emissions benefits of adopted California Air Resources Board regulations requiring cleaner and zero-emission trucks, locomotives, and CHE over the next decade. If a repeated port congestion event were to occur in 2035, NO<sub>x</sub> emissions from land-based freight transport should be lessened by more than 80%. Our study underscores the potential emissions impacts of disruptions to the freight transport network and the critical need to continue reducing its emissions in California and beyond.</p>","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"19 11","pages":"114023"},"PeriodicalIF":5.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457959/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shifting power: data democracy in engineering solutions. 权力转移:工程解决方案中的数据民主。
IF 6.7 2区 环境科学与生态学
Environmental Research Letters Pub Date : 2024-09-17 DOI: 10.1088/1748-9326/ad7614
Bethany B Cutts,Uchenna Osia,Laura A Bray,Angela R Harris,Hanna C Long,Hannah Goins,Sallie McLean,Jacqueline MacDonald Gibson,Tal Ben-Horin,Astrid Schnetzer
{"title":"Shifting power: data democracy in engineering solutions.","authors":"Bethany B Cutts,Uchenna Osia,Laura A Bray,Angela R Harris,Hanna C Long,Hannah Goins,Sallie McLean,Jacqueline MacDonald Gibson,Tal Ben-Horin,Astrid Schnetzer","doi":"10.1088/1748-9326/ad7614","DOIUrl":"https://doi.org/10.1088/1748-9326/ad7614","url":null,"abstract":"","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"42 1","pages":"101004"},"PeriodicalIF":6.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Central America’s agro-ecological suitability for cultivating coca, Erythroxylum spp 中美洲在农业生态方面是否适合种植古柯(Erythroxylum spp)?
IF 6.7 2区 环境科学与生态学
Environmental Research Letters Pub Date : 2024-09-16 DOI: 10.1088/1748-9326/ad7276
Paulo J Murillo-Sandoval, Steven E Sesnie, Manuel Eduardo Ordoñez Armas, Nicholas Magliocca, Beth Tellman, Jennifer A Devine, Erik Nielsen and Kendra McSweeney
{"title":"Central America’s agro-ecological suitability for cultivating coca, Erythroxylum spp","authors":"Paulo J Murillo-Sandoval, Steven E Sesnie, Manuel Eduardo Ordoñez Armas, Nicholas Magliocca, Beth Tellman, Jennifer A Devine, Erik Nielsen and Kendra McSweeney","doi":"10.1088/1748-9326/ad7276","DOIUrl":"https://doi.org/10.1088/1748-9326/ad7276","url":null,"abstract":"We assess how much of Central America is likely to be agriculturally suitable for cultivating coca (Erythroxylum spp), the main ingredient in cocaine. Since 2017, organized criminal groups (not smallholders) have been establishing coca plantations in Central America for cocaine production. This has broken South America’s long monopoly on coca leaf production for the global cocaine trade and raised concerns about future expansion in the isthmus. Yet it is not clear how much of Central America has suitable biophysical characteristics for a crop domesticated in, and long associated with the Andean region. We combine geo-located data from coca cultivation locations in Colombia with reported coca sites in Central America to model the soil, climate, and topography of Central American landscapes that might be suitable for coca production under standard management practices. We find that 47% of northern Central America (Honduras, Guatemala, and Belize) has biophysical characteristics that appear highly suitable for coca-growing, while most of southern Central America does not. Biophysical factors, then, are unlikely to constrain coca’s spread in northern Central America. Whether or not the crop is more widely planted will depend on complex and multi-scalar social, economic, and political factors. Among them is whether Central American countries and their allies will continue to prioritize militarized approaches to the drug trade through coca eradication and drug interdiction, which are likely to induce further expansion, not contain it. Novel approaches to the drug trade will be required to avert this outcome.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"8 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isotopic labeling evidence shows faster carbon release from microbial residues than plant litter 同位素标记证据显示,微生物残留物的碳释放速度快于植物废弃物
IF 6.7 2区 环境科学与生态学
Environmental Research Letters Pub Date : 2024-09-16 DOI: 10.1088/1748-9326/ad786a
Jingjing Zhu, Yuhua Cai, Fuzhong Wu, Jinyu Zhang, Xinying Zhang and Xiangyin Ni
{"title":"Isotopic labeling evidence shows faster carbon release from microbial residues than plant litter","authors":"Jingjing Zhu, Yuhua Cai, Fuzhong Wu, Jinyu Zhang, Xinying Zhang and Xiangyin Ni","doi":"10.1088/1748-9326/ad786a","DOIUrl":"https://doi.org/10.1088/1748-9326/ad786a","url":null,"abstract":"Carbon (C) release from plant and microbial residues is a primary pathway of energy flow from photosynthetic and metabolic biomass to carbon dioxide (CO2) in terrestrial ecosystems. Traditional view show that microbial residue C is more resistant to decompose than plant litter because their smaller particle sizes could be preferentially occluded in microaggregates with less microbial accessibility. However, we still lack a quantitative assessment (i.e. isotopic C labeling) to isolate the progressive release of C fractions from both plant and microbial residues. Here we used a global data set of 117 decomposition experiments that traced the 13C or 14C release of isotopically labeled plant and microbial residues to estimate the C release rates and turnover times by using a first-order exponential kinetics model. The average C release rates of crop, grass and tree litter were 7.78, 3.79 and 2.11 yr−1, which were significantly lower than microbial residues (13.07 yr−1). Although C release rates of both plant and microbial residues were positively correlated with site temperature, the mean turnover time of microbial residues was 2–6 times lower than plant litter. We suggest that a constraint in microbial and plant residues leads to a predictable pattern of C release during terrestrial decomposition, which could be included in Earth system models.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"17 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Change in the sustainability of regional agricultural systems: based on an emergy decomposition analysis 地区农业系统可持续性的变化:基于应急分解分析
IF 6.7 2区 环境科学与生态学
Environmental Research Letters Pub Date : 2024-09-16 DOI: 10.1088/1748-9326/ad786b
Fei Song, Haoyu Wu, Zihan Sun, Junbo Bai, Fangli Su, Deshen Xu, Chenchen Cao, Haifu Li, Shuang Song and Yi Liu
{"title":"Change in the sustainability of regional agricultural systems: based on an emergy decomposition analysis","authors":"Fei Song, Haoyu Wu, Zihan Sun, Junbo Bai, Fangli Su, Deshen Xu, Chenchen Cao, Haifu Li, Shuang Song and Yi Liu","doi":"10.1088/1748-9326/ad786b","DOIUrl":"https://doi.org/10.1088/1748-9326/ad786b","url":null,"abstract":"In the context of rapid population growth and limited arable land resources, the agricultural system has to provide enough food in a sustainable way. Regional agricultural systems have good consistency in agricultural practices, management decisions, social economy, and climate, which is of great significance in ensuring food security. In this study, emergy analysis and the logarithmic mean divisia index method were integrated to construct an evaluation framework from the dimensions of socio-economic environment, resource environment, climate environment, and ecological environment. Then we evaluated and analyzed the changes in agricultural system sustainability from 1990 to 2019 in the mainstream of Liaohe River Basin, a typical agricultural basin in China. The results showed that the Emergy sustainability index (ESI) decreased from 0.17 to 0.14, and factors Δ Pt/Gt (social and economic development level), Δ G/I (agricultural economic benefits), and Δ Gt/G (economic structure) from the socio-economic environment dimension had the greatest impact on changes in ESI. Moreover, society and economy affected the factors in the resource environmental dimensions through the allocation of policies and resources, which in turn directly affected ESI. The influence of factors from the climatic environment and ecological environment weakens as the ability to manage agricultural systems increases. The research provided a reference for the planning and management of sustaining agricultural systems at a regional scale.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"39 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The health, climate, and equity benefits of freight truck electrification in the United States 美国货运卡车电气化的健康、气候和公平效益
IF 6.7 2区 环境科学与生态学
Environmental Research Letters Pub Date : 2024-09-16 DOI: 10.1088/1748-9326/ad75a9
Eleanor M Hennessy, Corinne D Scown and Inês M L Azevedo
{"title":"The health, climate, and equity benefits of freight truck electrification in the United States","authors":"Eleanor M Hennessy, Corinne D Scown and Inês M L Azevedo","doi":"10.1088/1748-9326/ad75a9","DOIUrl":"https://doi.org/10.1088/1748-9326/ad75a9","url":null,"abstract":"Long-haul freight shipment in the United States relies on diesel trucks and constitutes ∼3% of U.S. greenhouse gas emissions and a significant share of local air pollution. Here, we compare the climate and air pollution-related health damages from electric versus diesel long-haul truck fleets. We use truck commodity flows to estimate tailpipe emissions from diesel trucks and regional grid emissions intensities to estimate charging emissions from electric trucks under various grid scenarios. We use a reduced complexity air quality model combined with valuation of air pollution-related premature deaths (using two hazard ratios (HRs)) and quantify the distributional health impacts in different scenarios. We find that annual health and climate costs of the current diesel fleet are $195–$249/capita compared to $174–$205/capita for a new diesel fleet, and $156–$177/capita for an electric fleet, depending on the HR. We find that freight electrification could avoid $6.2–8.5 billion in health and climate damages annually when compared to a fleet of new diesel vehicles (with even higher benefits when compared to the current diesel fleet). However, the Midwest and parts of the Gulf Coast would experience an increase in health damages due to vehicles charging using electricity from coal power plants. If old coal power plants (operating in 1980 or earlier) are replaced with zero-emission generation, electrification of all U.S. freight would result in $32.3–39.2 billion in avoided damages annually and health benefits throughout the U.S. Electrifying transport of consumer manufacturing goods (including electronics, transport equipment, and precision instruments) and food, beverage, and tobacco products would provide the largest absolute health and climate benefits, whereas mixed freight and manufacturing goods would result in the largest benefits per tonne-km. We find small variations in health damages across race and income. These results will help policymakers prioritize electrification and charging investment strategies for the freight transportation sub-sector.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"76 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laying the foundations for negative emissions technologies: insights from a workshop 为负排放技术奠定基础:研讨会的见解
IF 6.7 2区 环境科学与生态学
Environmental Research Letters Pub Date : 2024-09-16 DOI: 10.1088/1748-9326/ad786d
Patrick Shorey, Grace Awuor Arwa, Kristen R Schell and Ahmed Abdulla
{"title":"Laying the foundations for negative emissions technologies: insights from a workshop","authors":"Patrick Shorey, Grace Awuor Arwa, Kristen R Schell and Ahmed Abdulla","doi":"10.1088/1748-9326/ad786d","DOIUrl":"https://doi.org/10.1088/1748-9326/ad786d","url":null,"abstract":"Pre-empting the worst consequences of climate change requires both mitigation of emissions from the global energy system and carbon dioxide removal through negative emissions technologies. Despite their nascence, negative emissions technologies are being incorporated into nationally determined contributions to achieve ambitious targets. It is therefore urgent to build a scaffolding that enables their expansion. Here, we report results from a workshop that brought together 34 prominent stakeholders, including scientists, engineers, energy system analysts, economists, experts in public policy, and policy makers. Participants discussed the likely cost and performance of these technologies; elucidated the opportunities and risks facing deployment; and envisioned how nations might build the necessary scaffolding for expansion. The majority narrative is that negative emissions technologies will have a bridging role in decarbonizing existing assets. Different models of deployment were proposed. Reaching the scale of deployment necessary to meet emissions targets is lengthy and expensive. Financial and regulatory risks are seen as greater barriers to deployment at scale than technological risk. Greater certainty regarding carbon pricing, production tax credits, and support for geological characterization and trunkline construction could reduce the former. Critical to expansion is a large-scale increase in low-carbon power production; the implementation of regulatory frameworks that remove uncertainty surrounding investment decisions; and prudent societal engagement.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"19 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing exposure of global croplands productivity to growing season heatwaves under climate warming 在气候变暖的情况下,全球耕地生产力越来越容易受到生长季节热浪的影响
IF 6.7 2区 环境科学与生态学
Environmental Research Letters Pub Date : 2024-09-16 DOI: 10.1088/1748-9326/ad7868
Yongjun Chen, Wenxia Zhang and Tianjun Zhou
{"title":"Increasing exposure of global croplands productivity to growing season heatwaves under climate warming","authors":"Yongjun Chen, Wenxia Zhang and Tianjun Zhou","doi":"10.1088/1748-9326/ad7868","DOIUrl":"https://doi.org/10.1088/1748-9326/ad7868","url":null,"abstract":"Growing season heatwaves that occur simultaneously over global croplands can negatively impact global food baskets. The long-term changes of growing season heatwaves, as well as their impacts on croplands productivity, are crucial to food security, but remain unclear. Here, we investigated changes in the frequency, intensity and magnitude of growing season heatwaves from the past to the future over the global croplands, based on observations and Coupled Model Intercomparison Project Phase 6 models. We introduced an index, gross primary productivity (GPP) exposure, as a proxy of the overall impact of heatwaves on cropland productivity. The results show that the frequency and intensity of growing season heatwaves have increased since 1950 and will continue throughout the 21st century. The increase of the annual accumulated magnitude of growing season heatwaves in the future is mainly contributed by the increase of heatwave frequency. This leads to a global-scale increase in the GPP exposure to growing season heatwaves, with Asia, North America, and Europe being the most affected. The continued increase in GPP exposure is dominated by increases in heatwaves rather than GPP itself. Under the lower emission scenario SSP1-2.6, the global cropland GPP exposure will reduce by 86.11% and 330.47% relative to that under SSP2-4.5 and SSP5-8.5 scenarios, respectively, by the end of 21st century. Our results provide crucial insights into potential impacts of heatwaves on cropland productivity and hence food security.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"72 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing ambient water quality monitoring and management through citizen science in low- and middle-income countries 通过公民科学推动中低收入国家的环境水质监测和管理
IF 6.7 2区 环境科学与生态学
Environmental Research Letters Pub Date : 2024-09-16 DOI: 10.1088/1748-9326/ad7305
Jose Castro, Javier Mateo-Sagasta and Saskia Nowicki
{"title":"Advancing ambient water quality monitoring and management through citizen science in low- and middle-income countries","authors":"Jose Castro, Javier Mateo-Sagasta and Saskia Nowicki","doi":"10.1088/1748-9326/ad7305","DOIUrl":"https://doi.org/10.1088/1748-9326/ad7305","url":null,"abstract":"In contexts where conventional environmental monitoring has historically been limited, citizen science (CS) for monitoring efforts can be an effective approach for decentralized data generation that also raises scientific literacy and environmental awareness. To that end, the United Nations Environmental Program is considering CS as a mechanism for producing ambient water quality data to track progress on sustainable development goal (SDG) indicator 6.3.2: ‘proportion of bodies of water with good ambient water quality’. However, the alignment of SDG 6.3.2 monitoring requirements with CS capacity and results in low- or middle-income countries has not been assessed. Through a systematic literature review of 49 journal publications, complemented by 15 key informant interviews, this article examines the methods and outputs of CS programs in resource-constrained settings. We explore the potential of these programs to contribute to tracking SDG 6.3.2. Using the CS impact assessment framework, we evaluate broader outcomes of CS programs across 5 domains: society, economy, environment, governance, and science and technology. Despite large variability in scope, CS programs were consistently found to generate useful data for national-level reporting on physicochemical and ecological parameters; however, data quality is a concern for CS measurement of microbiological parameters. The focus in literature to-date is predominantly on scientific data production which falls only within the ‘science and technology’ outcome domain. Societal, governance, economic, and environmental outcomes are infrequently evaluated. Of the studies reviewed in this article, 75% identified some form of pollution but only 22% of them reported follow-up actions such as reporting to authorities. While CS has important potential, work is still needed towards the ‘formalization’ of CS, particularly if intended for more vulnerable contexts.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"41 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信