{"title":"Effects of steroid hormones and their mixtures on western mosquitofish (Gambusia affinis).","authors":"Chen-Si Wang, Guo-Yong Huang, Dong-Qiao Lei, Guang-Guo Ying","doi":"10.1016/j.aquatox.2024.107167","DOIUrl":"10.1016/j.aquatox.2024.107167","url":null,"abstract":"<p><p>Steroid hormones, including estrone (E1), androstadienedione (ADD), and androstenedione (AED), are prevalent in aquatic ecosystems and pose ecological risks due to their disruptive influence on fish populations. However, little consideration has been given to the endocrine disrupting effects of fish exposed to complex mixtures of hormones in the real world. In this study, adult female western mosquitofish (Gambusia affinis) were exposed to two concentrations of E1 (100 ng/L for E1L and 5,000 ng/L for E1H), ADD (100 ng/L for ADDL and 10,000 ng/L for ADDH), and AED (100 ng/L for AEDL and 10,000 ng/L for AEDH) as well as four binary mixture treatments (ADDL+E1L, ADDH+E1H, AEDL+E1L, and AEDH+E1H). After 42 d, their basic physiological parameters, secondary sex characteristics, gonadal health, embryo numbers, and HPG axis-related gene expression were evaluated. Results showed that the P/D ratio of hemal spines in AEDH+E1H exhibited a pronounced reduction, approximately half that of E1H. Moreover, the number of embryos in ADDH+E1H and AEDH+E1H was reduced by approximately 3-fold compared to E1H. Correspondingly, G. affinis exposure to ADDH+E1H and AEDH+E1H increased the proportion of degenerated oocytes. Exposure to combined treatments led to significant changes in the transcription of HPG axis-related genes in fish and displayed a certain degree of interaction. Furthermore, cluster heatmap analysis of target genes demonstrated that ADD+E1 and AED+E1 (both high and low concentrations) were far apart from ADD, AED and E1. Collectively, these observations imply the presence of antagonistic interactions in combined treatments, and the negative impact on the growth, maturation, and endocrine system of G. affinis varies accordingly.</p>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":" ","pages":"107167"},"PeriodicalIF":4.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aquatic ToxicologyPub Date : 2024-12-18DOI: 10.1016/j.aquatox.2024.107214
Uriel Arreguin-Rebolledo, Federico Páez-Osuna, Gladys Valencia-Castañeda, Mario Alberto Arzate-Cárdenas, Mariana V Capparelli
{"title":"Combined effects of polymethylmethacrylate microplastics with arsenic and copper on the euryhaline rotifer Proales similis.","authors":"Uriel Arreguin-Rebolledo, Federico Páez-Osuna, Gladys Valencia-Castañeda, Mario Alberto Arzate-Cárdenas, Mariana V Capparelli","doi":"10.1016/j.aquatox.2024.107214","DOIUrl":"https://doi.org/10.1016/j.aquatox.2024.107214","url":null,"abstract":"<p><p>Aquatic organisms are typically exposed to chemical mixtures, including microplastics and metal(loid)s. However, most research has primarily focused on the toxicity of individual chemicals, potentially overestimating their risks to aquatic life. This study examined the combined effects of polymethylmethacrylate microplastics (PMMA-MPs) with As and Cu at environmentally relevant concentrations on the euryhaline rotifer Proales similis. The 48-h EC<sub>50</sub> of PMMA-MPs (1.5-11.5 μm) was determined using concentrations from 1.0 to 100 mg/L. These concentrations were then combined with 0.41 mg/L As or 0.034 mg/L Cu. The combined effects of PMMA-MPs (0.031-1.0 mg/L) with As (0.025-0.2 mg/L) and Cu (0.0025-0.02 mg/L) at environmental concentrations were assessed through five-day chronic toxicity reproductive tests. The population growth rate was the endpoint for both acute and chronic testing. The EC<sub>50</sub> of PMMA-MPs for P. similis was 44.0 mg/L, but this value significantly decreased when PMMA-MPs were co-exposed with the tested metal(loid)s. The tested mixtures of PMMA-MPs with As and Cu reduced growth rates by 13 - 48 % and 11 - 35 %, respectively, compared to the individual exposure to each chemical. This indicates that PMMA-MPs alter the toxic behavior of these metal(loid)s and vice versa. The present findings reveal that the combination of environmentally relevant concentrations of MPs (modeled as PMMA-MPs) with As and Cu can induce synergistic effects in marine rotifers. These results highlight the importance of investigating pollution in realistic scenarios that many aquatic invertebrates face.</p>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"107214"},"PeriodicalIF":4.1,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aquatic ToxicologyPub Date : 2024-12-17DOI: 10.1016/j.aquatox.2024.107206
Marija Sedak, Maja Đokić, Nina Bilandžić, Tomislav Gomerčić, Miroslav Benić, Manuela Zadravec, Martina Đuras
{"title":"Cetacean species found stranded along Croatian coast of the Adriatic Sea as bioindicators of non-essential trace elements in the environment","authors":"Marija Sedak, Maja Đokić, Nina Bilandžić, Tomislav Gomerčić, Miroslav Benić, Manuela Zadravec, Martina Đuras","doi":"10.1016/j.aquatox.2024.107206","DOIUrl":"https://doi.org/10.1016/j.aquatox.2024.107206","url":null,"abstract":"In tissues of toothed whales from the Adriatic Sea (muscle, liver, kidney, lung, spleen, adipose tissue and skin) the concentrations of cadmium (Cd), lead (Pb) and arsenic (As) were analysed. In total, 186 dolphins were analysed; 155 bottlenose (<ce:italic>Tursiops truncatus</ce:italic>), 25 striped <ce:italic>(Stenella coeruleoalba</ce:italic>) and 6 Risso's dolphins (<ce:italic>Grampus griseus)</ce:italic>. Cadmium concentrations in tissue samples ranged from 0.001 mg/kg in muscle to 16.8 mg/kg wet weight in kidney. Arsenic concentrations in dolphin samples ranged from 0.010 to 12.9 mg/kg ww. The lowest As concentration was found in spleen and highest in liver of bottlenose dolphin. Cadmium and As levels in Risso's dolphins showed higher concentrations in all tissues in comparison to bottlenose and striped dolphins. >50 % of the measured Pb values for all three species of dolphins and examined tissues were lower than 0.1 mg/kg. The accumulation of Cd and As during the lifetime was confirmed. None of the dolphins analysed in this study were exposed to concentrations of Cd in the liver higher than 20 mg/kg wet weight, which can cause renal failure in marine mammals. Numerous species of marine mammals inhabit coastal environments alongside humans and utilize similar food sources, such as fish and cephalopods. Consequently, these mammals can function as valuable indicators of public health concerns.","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"1 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biotransport and toxic effects of micro- and nanoplastics in fish model and their potential risk to humans: A review.","authors":"Yanan Xu, Ling Liu, Yuqing Ma, Cunlong Wang, Fengshang Duan, Jianxue Feng, Haiyang Yin, Le Sun, Zhihan Cao, Jinho Jung, Ping Li, Zhi-Hua Li","doi":"10.1016/j.aquatox.2024.107215","DOIUrl":"https://doi.org/10.1016/j.aquatox.2024.107215","url":null,"abstract":"<p><p>The growing body of scientific evidence suggests that micro- and nanoplastics (MPs/NPs) pose a significant threat to aquatic ecosystems and human health. These particles can enter organisms through ingestion, inhalation, dermal contact, and trophic transfer. Exposure can directly affect multiple organs and systems (respiratory, digestive, neurological, reproductive, urinary, cardiovascular) and activate extensive intracellular signaling, inducing cytotoxicity involving mechanisms such as membrane disruption, extracellular polymer degradation, reactive oxygen species (ROS) production, DNA damage, cellular pore blockage, lysosomal instability, and mitochondrial depolarization. This review focuses on current research examining the in vivo and in vitro toxic effects of MPs/NPs on aquatic organisms, particularly fish, in relation to particulate toxicity aspects (such as particle transport mechanisms and structural modifications). Meanwhile, from the perspectives of the food chain and environmental factors, it emphasizes the comprehensive threats of MPs/NPs to human health in terms of both direct and indirect toxicity. Additionally, future research needs and strategies are discussed to aid in mitigating the potential risks of particulate plastics as carriers of toxic trace elements to human health.</p>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"107215"},"PeriodicalIF":4.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aquatic ToxicologyPub Date : 2024-12-16DOI: 10.1016/j.aquatox.2024.107210
Tianyu Zhuo, Beibei Chai, Xue-Yi You
{"title":"Modeling the spatiotemporal distribution, bioaccumulation, and ecological risk assessment of microplastics in aquatic ecosystems: A review.","authors":"Tianyu Zhuo, Beibei Chai, Xue-Yi You","doi":"10.1016/j.aquatox.2024.107210","DOIUrl":"https://doi.org/10.1016/j.aquatox.2024.107210","url":null,"abstract":"<p><p>Microplastic (MP) pollution poses a significant threat to aquatic ecosystems. Numerical modeling has emerged as an effective tool for predicting the distribution, accumulation, and risk assessment of MPs in aquatic ecosystems. However, published work has not systematically assessed the strengths and weaknesses of various modeling approaches. Therefore, we conducted a thorough review of the main modeling approaches for MPs over the past six years. We classified the approaches into three categories as: spatial and temporal distribution, bioaccumulation, and systematic ecological risk assessment. The review analyzed application scenarios, modeling methods, and the advantages and disadvantages of models. The results indicate that the accurate simulation of MPs spatial and temporal distribution requires reasonable parameterization and comprehensive transport considerations. Meanwhile, it is important to focus on coupling process models with other types of models. To enhance risk assessment models, expanding the relevant evaluation indicators is essential.</p>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"107210"},"PeriodicalIF":4.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aquatic ToxicologyPub Date : 2024-12-15DOI: 10.1016/j.aquatox.2024.107213
Rasha M Reda, Eman M Zaki, Ahmed A A Aioub, Mohamed M M Metwally, Fatma Mahsoub
{"title":"The potential effects of corn cob biochar on mitigating pendimethalin-induced toxicity in Nile tilapia (Oreochromis niloticus): Effects on hematological, biochemical, antioxidant-immune parameters, and histopathological alterations.","authors":"Rasha M Reda, Eman M Zaki, Ahmed A A Aioub, Mohamed M M Metwally, Fatma Mahsoub","doi":"10.1016/j.aquatox.2024.107213","DOIUrl":"https://doi.org/10.1016/j.aquatox.2024.107213","url":null,"abstract":"<p><p>This study aims to examine the restorative impact of corn cob biochar (CCB) on pendimethalin (PMD)-induced toxicity in Oreochromis niloticus. Fish were divided into four groups: the first control group without treatment, the second group (CCB) exposed to 10 g CCB/L, the third group (PDM) exposed to 0.355 mg PDM/L, and the fourth group (PDM+ CCB) receiving both 0.355 mg PDM/L and 10 g CCB/L for 30 days. PDM exposure resulted in behavioral alterations, low survival rate (73.33 %), hematological and biochemical impairments, increased oxidative stress, suppressed immunity, and histopathological damage in gill, liver, and brain tissues. Co-treatment with CCB significantly alleviated these effects, as evidenced by improved survival rate (88.88 %), hematological, biochemical, and antioxidant-immune parameters and reduced histopathological alterations. In conclusion, CCB demonstrated a promising potential to mitigate PDM-induced toxicity in O. niloticus by enhancing physiological, biochemical, and histological resilience.</p>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"107213"},"PeriodicalIF":4.1,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physicochemical behavior and ecological risk of biofilm-mediated microplastics in aquatic environments.","authors":"Ranran Zhou, Xirong Huang, Yongtao Ni, Zewei Ma, Hengchen Wei, Qijie Jin, Zhuhong Ding","doi":"10.1016/j.aquatox.2024.107209","DOIUrl":"https://doi.org/10.1016/j.aquatox.2024.107209","url":null,"abstract":"<p><p>The prevalence of microplastics (MPs) in aquatic environments has become the core of environmental pollution. In recent years, the inevitable biological aging process of MPs in natural environments has attracted researchers' attention. Such biofilm-mediated MPs, colonized by microorganisms, affect the physicochemical behavior and potential ecological risks of MPs. Therefore, it is critical to understand the impact of MPs' biofilm formation on the environmental fate and toxicity of MPs. This review presented a comprehensive discussion of the impact of biofilm formation on unique carrier effects and toxicological effects of MPs in aquatic environments. First, the biofilm formation process on MPs, the compositions of microorganisms in biofilm and the factors influencing biofilm formation were briefly summarized. Second, the sorption of pollutants and enrichment of antibiotic resistance genes onto biofilm-mediated MPs were discussed. Third, the potential effects of biofilm-mediated MPs on gut microbiota were analyzed. Finally, gaps in the field that require further investigations were put forward. This review emphasized that biofilm-mediated MPs have higher environmental risks and ecotoxicity, which is helpful in providing new insights for pollution prevention and control of new pollutant MPs.</p>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"107209"},"PeriodicalIF":4.1,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aquatic ToxicologyPub Date : 2024-12-14DOI: 10.1016/j.aquatox.2024.107211
Peining Cai, Qi Li, Shuhui Wang, Liju Tan, Jiangtao Wang
{"title":"Cytotoxicity of single and binary mixtures of copper and silica nanoparticles exposed to Nitzschia closterium f. minutissima.","authors":"Peining Cai, Qi Li, Shuhui Wang, Liju Tan, Jiangtao Wang","doi":"10.1016/j.aquatox.2024.107211","DOIUrl":"https://doi.org/10.1016/j.aquatox.2024.107211","url":null,"abstract":"<p><p>A large number of nanoparticles are produced and enter the aquatic environment, where they interact with each other, posing a potential threat to aquatic organisms. The toxicity of two types of nanoparticles (nCu and nSiO<sub>2</sub>) on Nitzschia closterium f. minutissima (N. closterium f. minutissima) was investigated in this study by examining changes in microalgal cell density, instantaneous fluorescence rate (Ft), and a range of antioxidant parameters in the cells. It was found that both nCu and nSiO<sub>2</sub> showed time- and concentration-dependent toxic effects on N. closterium f. minutissima. nSiO<sub>2</sub> could promote microalgae growth at low concentrations by providing Si, an essential element for the synthesis of siliceous shells. As the exposure time increased, both the growth and photosynthetic efficiency of the microalgae were inhibited. Nanoparticles also produced oxidative stress and caused lipid peroxidation in the microalgae. In the meantime, SOD and CAT activity were altered to protect cells from oxidative damage. Inverted biomicroscopy images showed that the microalgae enhanced their cell size to adapt to the environmental stress as exposed to 1 mg/L nCu. Scanning electron microscope (SEM) images showed that 10 mg/L nSiO<sub>2</sub> could adsorb nCu and reduce the toxic effect of nCu on the microalgae, while 30 mg/L nSiO<sub>2</sub> caused mechanical damage to microalgal cells and accelerated the internalization of nanoparticles and Cu<sup>2+</sup> in the cells.</p>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"107211"},"PeriodicalIF":4.1,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aquatic ToxicologyPub Date : 2024-12-14DOI: 10.1016/j.aquatox.2024.107212
Sarah Betz-Koch, Jörg Oehlmann, Matthias Oetken
{"title":"Extremely low repeated pyrethroid pulses increase harmful effects on caddisfly larvae (Chaetopteryx villosa) and influence species interactions.","authors":"Sarah Betz-Koch, Jörg Oehlmann, Matthias Oetken","doi":"10.1016/j.aquatox.2024.107212","DOIUrl":"https://doi.org/10.1016/j.aquatox.2024.107212","url":null,"abstract":"<p><p>Based on effect data, regulatory acceptable concentrations (RACs) are derived for surface waters to avoid unacceptable effects on the environment. RACs often relay on acute tests with single species, which may underestimate the effects under field conditions. Therefore, we applied a higher tier approach with artificial indoor streams (AIS). We exposed representatives of the benthic community in lotic surface waters to varying numbers (one to four times) of 12-hour deltamethrin pulses over a 35-day period with intervening recovery phases, to simulate multiple pesticide peak exposures caused by rain events or spray drift. The deltamethrin concentration of each pulse was equivalent to its RAC value of 0.64 ng/L and consequently should have no unacceptable effects on the tested species. In contrast, we observed that the mortality of caddisfly larvae increased significantly with the number of pulses at the RAC. In addition, larval development was significantly delayed after four deltamethrin pulses, while the gammarids apparently benefited from the toxicity-induced mortality of the larvae. This study underlines the importance of considering higher tier approaches that include species interactions and additional stressors in order to obtain more realistic effect data and optimise regulatory risk assessment. These are not considered in acute tests with single species, which usually leads to an underestimation of the effects. Based on the results of this study, we propose to lower the RAC value for aquatic environments due to the uncertainties mentioned above.</p>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"107212"},"PeriodicalIF":4.1,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polystyrene microplastics exacerbate acetochlor-induced reproductive toxicity and transgenerational effects in zebrafish","authors":"Yang Wang, Chaofan Ma, Zenglong Chen, Yinping Guo, Yuan Jing, Xiaolei Chen, Hongwu Liang","doi":"10.1016/j.aquatox.2024.107208","DOIUrl":"https://doi.org/10.1016/j.aquatox.2024.107208","url":null,"abstract":"Microplastic (MPs) can adsorb co-existing pollutants, and alter their behavior and toxicity. Meanwhile, amide herbicides like acetochlor (ACT) are widely used in agriculture, with potential endocrine-disrupting effects that raise ecological concerns. The aim of this research was to examine the effects of MPs on the reproductive endocrine disruption caused by ACT and the effects of maternal transmission. Zebrafish were employed in this study to assess the reproductive toxicity of ACT alone and in combination with polystyrene microplastics (PS-MPs) of different sizes (200 nm and 2 μm) and concentrations (0.1 and 1 mg/L) over a 63-day exposure experiment. The results indicated that ACT was concentrated in zebrafish tissues in the order: intestine > liver > gill > brain > gonad > muscle. PS-MPs increased ACT bioaccumulation, worsened gonadal damage, led to abnormalities in hormone levels, and caused disruptions in HPG axis gene expression, further exacerbating the reproductive toxicity. Maternal transfer of ACT affected offspring growth, thyroid function, and HPT axis gene expression, with nanoplastics (NPS) amplifying these adverse effects. This study offers crucial insights into the ecological hazards posed by ACT and PS-MPs, emphasizing the increased toxicity due to PS-MPs.","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"117 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}