Blanca Arroyo-Correa, Ignasi Bartomeus, Pedro Jordano, E. Fernando Cagua, Daniel B. Stouffer
{"title":"Bridging the gap between individual specialization and species persistence in mutualistic communities","authors":"Blanca Arroyo-Correa, Ignasi Bartomeus, Pedro Jordano, E. Fernando Cagua, Daniel B. Stouffer","doi":"10.1002/ecm.70031","DOIUrl":"10.1002/ecm.70031","url":null,"abstract":"<p>Mutualistic interactions among organisms are fundamental to the origin and maintenance of biodiversity. Yet, the study of community dynamics often relies on values averaged at the species level, ignoring how intraspecific variation can affect those dynamics. We developed a theoretical approach to evaluate the extent to which variation within populations, in terms of interactions, can influence structural stability, a robust measure of species' likelihood of persistence in mutualistic systems. Next, we examine how intraspecific variation in mutualistic interactions affects species' persistence theoretically in a simplified community, which provides a solid foundation for contextualizing empirical results. This theoretical exploration revealed that differences in the benefits received by different individual types by mutualistic partners, as driven by the way interactions are distributed among those types due to individual specialization, strongly influence species persistence. Building on these insights, we move beyond the theoretical framework and work through an empirical case study involving three co-occurring plant species. Drawing from detailed field data on plant–pollinator interactions and plant fitness, we quantify intraspecific variation in the mutualistic benefits received by plants and incorporate this variation into estimations of structural stability. Through explicit consideration of this facet of intraspecific variation, we found that, for all three focal plant species, populations composed of individuals specialized in pollinator use promote the persistence of the plant species they belong to and their associated pollinator community, only in the absence of heterospecific plant competitors. However, more importantly, these positive effects do not hold when plant species compete with a broader, diverse plant community. In this case, two of the focal plant populations are more vulnerable when they comprise more specialized individuals and therefore are less likely to persist. By integrating the proposed theoretical approach with empirical data, this study highlights the importance of individual variation in promoting species persistence in mutualistic systems. In doing so, it not only advances our understanding of basic mechanisms that foster biodiversity maintenance but also provides practical insights for biodiversity conservation in the face of changing environmental conditions.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 3","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145203311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miranda Roethler, Robin J. Fales, Cinde Donoghue, Jacqueline L. Padilla-Gamiño
{"title":"Global meta-analysis reveals the impacts of ocean warming and acidification on kelps","authors":"Miranda Roethler, Robin J. Fales, Cinde Donoghue, Jacqueline L. Padilla-Gamiño","doi":"10.1002/ecm.70034","DOIUrl":"10.1002/ecm.70034","url":null,"abstract":"<p>Kelp forests are among the most diverse and productive ecosystems in the world, providing critical habitat for numerous ecologically and economically important species. However, kelps are at risk from climate change, and declining populations worldwide demonstrate the need to characterize and quantify the effects of anthropogenic stressors on kelp physiology. Here, we performed a meta-analysis on true kelps (order Laminariales) in response to ocean warming and acidification based on a global synthesis of 7000 data points from 143 experimental studies. Our results show that ocean warming has a strong negative impact on kelps at all life stages and across various physiological levels, including growth, reproduction, and survival. In contrast, ocean acidification generally has no effect, except for its negative impact on reproduction. In most cases, co-occurring warming and acidification acted synergistically. Response to warming, acidification, and multiple driver scenarios increased as the intensity and duration of exposure increased. In our analyses, the genera <i>Eualaria</i>, <i>Hedophyllum, Lessonia</i>, and <i>Postelsia</i> were among the most vulnerable to warming. Studies conducted in the temperate northern Pacific showed extreme negative effects of warming. We also identify key gaps in our understanding of kelp responses to climate change, such as the impacts on microscopic spores and the combined effects of warming and acidification. This analysis synthesizes trends in a rapidly expanding field of literature and provides a deeper understanding of how kelps will respond to a rapidly changing ocean.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 3","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145188518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Feng, István Czeglédi, Andrea Funk, Thomas Hein, Didier Pont, Paul Meulenbroek, Alice Valentini, Tibor Erős
{"title":"Drivers of metacommunity dynamics in river-floodplain fish: A path modeling approach","authors":"Kai Feng, István Czeglédi, Andrea Funk, Thomas Hein, Didier Pont, Paul Meulenbroek, Alice Valentini, Tibor Erős","doi":"10.1002/ecm.70036","DOIUrl":"10.1002/ecm.70036","url":null,"abstract":"<p>Metacommunity theory offers a compelling framework for understanding the processes that govern biodiversity patterns across space and time. Yet, a persistent challenge remains: integrating the wide array of ecological drivers into a unified model using observational data from complex, dynamic ecosystems. In this study, we present a novel, process-explicit path modeling approach that bridges recent theoretical advances in metacommunity ecology with empirical data. Focusing on fish communities in the floodplains of the Danube River, we leverage environmental DNA (eDNA) metabarcoding to characterize community composition across a spatiotemporal network of sites. We partition beta diversity into its species replacement and richness difference components and apply structural equation modeling to evaluate the relative influence of multiple ecological drivers—including spatial and temporal dispersal, demographic stochasticity, abiotic filtering, and interspecific interactions. Our results reveal that river-floodplain fish metacommunities are shaped by a complex web of interacting processes. Notably, we find that species replacement is primarily driven by spatial distance and environmental filtering, while richness differences are more influenced by biotic interactions and community size. Lateral hydrological connectivity emerged as a pivotal landscape feature, governing beta diversity both directly and indirectly through its modulation of local environmental conditions. This connectivity acted as a structural conduit, mediating dispersal, environmental heterogeneity, and biotic interactions. By disentangling the contributions of multiple processes, our model underscores the dominant role of spatial structuring and abiotic filtering over temporal dynamics and biotic interactions in shaping metacommunity assembly. The model also demonstrates improved explanatory power and stronger model fit, outperforming previous studies. These findings underscore the need for integrative frameworks that consider the simultaneous influence of multiple ecological processes, particularly in highly dynamic systems like river-floodplains. Our conceptual and modeling approach advances metacommunity theory by offering a robust, data-driven means to assess complex assembly mechanisms and by emphasizing the critical role of connectivity and habitat complementarity in sustaining biodiversity within dynamic landscapes.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 3","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145181118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyle Leathers, David Herbst, Michael Bogan, Gabriela Jeliazkov, Albert Ruhí
{"title":"Ecological pathways connecting riverine drought to community change across space and time","authors":"Kyle Leathers, David Herbst, Michael Bogan, Gabriela Jeliazkov, Albert Ruhí","doi":"10.1002/ecm.70035","DOIUrl":"10.1002/ecm.70035","url":null,"abstract":"<p>Climate change is intensifying droughts via reduced snowpack and accelerated snowmelt in high mountains globally, altering community structure in snow-dependent rivers. To predict impending ecological change in rivers, we must understand the importance of the abiotic and biotic mechanisms connecting hydrologic change to biodiversity change and whether these mechanisms operate similarly across space and time. Here, we studied abiotic effects of drought and invertebrate communities in a minimally disturbed watershed in California's Sierra Nevada. Our study employed a highly replicated design of 60 nested sites (capturing microhabitat to reach-level variation) and over two decades of change (2002–2023) in a subset of sites, including the driest period on record. We used spatial stream network (SSN) models and autoregressive (AR) models to partition the spatial and temporal variance into covariate-driven versus autocorrelation effects. Structural equation modeling allowed us to identify causal pathways connecting hydrologic change to invertebrate community change. We found that drought-driven variation in temperature, water velocity, and fine sediment all explained variation in abundance in over a third of the species in the community. Notably, the influence of abiotic effects differed across space and time: no taxa had their variance explained by the same abiotic effect in the same direction across space and time, and total spatial variance explained by abiotic effects for each species had no relationship with its temporal counterpart. We also found that community dissimilarity across space was poorly explained by abiotic effects, while temporal dissimilarity was driven by differences in temperature and water velocity causing species turnover. Finally, we tested the scale dependency of our inferences by changing the extent and resolution of our data (resampling from seasonal to interannual; from microhabitat to watershed-level data) and found that pathways of community change varied depending on scale and on whether comparisons were made across space or time. These differences between space and time likely arise from some ecological drivers operating more strongly in one dimension and from spatial and temporal autocorrelation in species abundances masking environmental effects. Our study illustrates that projecting riverine community composition under future hydroclimates requires accounting for mechanism context dependency over space and time.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 3","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145140915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The contribution of metabolic theory to ecology","authors":"Andrew Clarke","doi":"10.1002/ecm.70030","DOIUrl":"10.1002/ecm.70030","url":null,"abstract":"<p>The metabolic theory of ecology (MTE) has been an important strand in ecology for almost a quarter of a century, renewing interest in the importance of body size and the role of energy. The core of the MTE is a hydrodynamic model of the vertebrate cardiovascular system that predicts allometric scaling of metabolic rate with exponents in the range 0.75 at infinite size to ~0.80 at more realistic sizes, though most studies using the model have assumed an exponent of 0.75. The model is broadly supported by data for resting and routine metabolic rate in ectothermic vertebrates and also a wide range of invertebrates with a circulatory system. Scaling in endotherms is influenced by additional factors, possibly associated with heat flow, and is essentially isometric in prokaryotes, unicellular eukaryotes, and diploblastic invertebrates. This suggests that the presence of any form of circulatory system, even one much simpler than the closed high-pressure system that is the basis of the model, results in allometric scaling of metabolic rate, though the value of the scaling exponent varies across taxa. The temperature sensitivity of metabolism is captured by a simple Boltzmann factor, with an assumed apparent activation energy of 0.65 eV (<i>Q</i><sub>10</sub> ~ 2.4). Empirical data are frequently lower than this, typically in the range 0.52–0.57 eV (<i>Q</i><sub>10</sub> ~ 2.0–2.2). Attempts to broaden the scope of the MTE into areas such as growth, speciation, and life-history have met with mixed success. The major use of the MTE has been to explore the consequences of the central scaling tendency for topics as diverse as migration, acoustic communication, trophic interactions, ecosystem structure, and the energetics of deep-sea or extinct taxa. Although it cannot predict absolute metabolic rates, the MTE has been an important tool for exploring how energy flow influences ecology. Its greatest potential for future use is likely to come from building energetics into ecosystem models and in exploring potential consequences of climate change. In both cases, however, it will be important to encompass the range of empirical data for both scaling and temperature sensitivity rather than the widely assumed canonical values.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 3","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144998879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francis J. Burdon, Jasmina Sargac, Ellinor Ramberg, Cristina Popescu, Nita Darmina, Corina Bradu, Marie A. E. Forio, Felix Witing, Benjamin Kupilas, Danny C. P. Lau, Martin Volk, Geta Rîşnoveanu, Peter Goethals, Nikolai Friberg, Richard K. Johnson, Brendan G. McKie
{"title":"Fatty acid biomarkers reveal landscape influences on linkages between aquatic and terrestrial food webs","authors":"Francis J. Burdon, Jasmina Sargac, Ellinor Ramberg, Cristina Popescu, Nita Darmina, Corina Bradu, Marie A. E. Forio, Felix Witing, Benjamin Kupilas, Danny C. P. Lau, Martin Volk, Geta Rîşnoveanu, Peter Goethals, Nikolai Friberg, Richard K. Johnson, Brendan G. McKie","doi":"10.1002/ecm.70025","DOIUrl":"10.1002/ecm.70025","url":null,"abstract":"<p>Stream and riparian habitats are meta-ecosystems that can be strongly connected via the emergence of aquatic insects, which form an important prey subsidy for terrestrial consumers. Anthropogenic perturbations that impact these habitats may indirectly propagate across traditional ecosystem boundaries, thus weakening aquatic-terrestrial food web linkages. We investigated how algal production, aquatic invertebrates, and terrestrial spiders influence cross-ecosystem connectivity in temperate streams across four European catchments with varying levels of human disturbance. We used fatty acid biomarkers to measure putative aquatic linkages to riparian spiders. Variation-partitioning analysis indicated that aquatic insect dispersal traits explained a relatively large proportion of variability in the fatty acid profile of spiders. Trophic connectivity, as measured by the proportion of the polyunsaturated fatty acid eicosapentaenoic acid (EPA) and the ratio of EPA to its chemical precursor, alpha-linolenic acid (ALA), was positively associated with abundances of “aerial active” dispersing aquatic insects. However, this positive influence was also associated with changes in environmental context and arachnid beta diversity. Structural equation modeling disentangled how aquatic insect communities influence trophic connectivity with riparian predators after accounting for biological and environmental contingencies. Our results show how subsidies of stream insects are a putative source of essential fatty acids for adjacent terrestrial food webs. Catchment-wide impacts indirectly propagated to the local scale through impacts on aquatic invertebrate communities, thus affecting stream-riparian food webs. Increased riparian tree cover enhanced stream insect subsidies via dispersal traits despite reducing aquatic primary production through shading. Consequently, ecosystem properties such as woody riparian buffers that increase aquatic-terrestrial trophic connectivity have the potential to affect a wide range of consumers in modified landscapes.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 3","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144927632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isidora Silva-Valderrama, José Ramón Úrbez-Torres, T. Jonathan Davies
{"title":"Co-phylogenetic constraints on host breadth within an emerging fungal pathogen complex of global concern","authors":"Isidora Silva-Valderrama, José Ramón Úrbez-Torres, T. Jonathan Davies","doi":"10.1002/ecm.70027","DOIUrl":"10.1002/ecm.70027","url":null,"abstract":"<p>Emerging fungal infectious diseases constitute the largest pathogen threat to plants. However, the factors influencing fungal-plant interactions, host shifts, and the emergence of pathogens on a novel host are still not well understood. Evolutionary relationships among hosts appear to be important, with closely related hosts often sharing pathogens and pests, but we typically lack information on the evolutionary history of the pathogens. Here, we gather over 27,000 sequences to construct a comprehensive phylogenetic tree for Botryosphaeriaceae, a fungal family including many emerging pathogens of global concern, and explore the evolutionary conservatism in fungal-plant associations across host and pathogen phylogenies. We reveal a significant influence of both phylogenies in constraining fungal-plant associations. However, we also show that most fungal pathogens are generalists, able to infect multiple hosts, and demonstrate an evolutionary trend toward increased generalism, contrary to theory that suggests that pathogens should evolve toward increased host specialization. We suggest that the anthropogenic movement of plant species and agricultural practices might have allowed some Botryosphaeriaceae to escape phylogenetic constraints on host range via increasing the ecological opportunities for host shifts. Understanding the factors influencing fungal-plant interaction and host breadth of pathogenic fungi could help identify emerging threats, prevent spillover onto naïve plants, and reduce the risk of further host range expansion.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 3","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144915059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ellen C. Martin, Brage Bremset Hansen, Aline Magdalena Lee, Ivar Herfindal
{"title":"Life history traits influence environmental impacts on spatial population synchrony in European birds and butterflies","authors":"Ellen C. Martin, Brage Bremset Hansen, Aline Magdalena Lee, Ivar Herfindal","doi":"10.1002/ecm.70029","DOIUrl":"10.1002/ecm.70029","url":null,"abstract":"<p>Nearby populations often experience shared environmental fluctuations and have stronger population synchrony than distant populations. However, different species often show different levels of synchrony across the same areas and environments, possibly because some traits influence their susceptibility to environmental stochasticity. In this paper, we compiled a pan-European collection of long-term annual abundance data on birds and butterflies from eight countries to identify how species' life history traits can influence the effects of environmental synchrony. We show that in birds and butterflies, the impact of environmental synchrony on population synchrony depended on key life history traits. For birds, which had stronger evidence for synchronizing effects of temperature compared to precipitation, the environmental effects on population synchrony depended on generation time, dietary diversity, and migratory tactic. The positive effects of environmental synchrony were stronger in bird species with short generation times (i.e., faster lived), higher dietary diversity, resident species, and short-distance migrants. In butterflies, which had stronger evidence for synchronizing effects of precipitation compared to temperature, we found that environmental effects on population synchrony depended on voltinism, with stronger effects in multivoltine (i.e., faster lived) species. Thus, life history can interact with environmental synchrony in shaping patterns of spatial population synchrony, with implications for predicting impacts of environmental change on species abundances over larger spatial scales. Further understanding of drivers of spatial population synchrony based on long-term abundance data is important in the face of increasingly severe threats to biodiversity and could be key for successful future conservation outcomes.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 3","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144869800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lyndsie M. Collis, Jonathan P. Benstead, Wyatt F. Cross, Alexander D. Huryn, Jill R. Welter, Paula C. Furey, Philip W. Johnson, Gísli M. Gíslason, Jón S. Ólafsson, James M. Hood
{"title":"Temperature and nitrogen availability interact to shape N-acquisition pathways and metabolism in stream biofilms","authors":"Lyndsie M. Collis, Jonathan P. Benstead, Wyatt F. Cross, Alexander D. Huryn, Jill R. Welter, Paula C. Furey, Philip W. Johnson, Gísli M. Gíslason, Jón S. Ólafsson, James M. Hood","doi":"10.1002/ecm.70028","DOIUrl":"10.1002/ecm.70028","url":null,"abstract":"<p>The effects of warming and nutrient enrichment—two drivers of global change—on ecosystems have been studied in isolation for decades. We thus have a limited understanding of how they interact to influence ecosystem metabolism (gross primary production, ecosystem respiration, and net ecosystem production), which supports food webs and influences carbon (C), nitrogen (N), and phosphorus (P) cycling. To better understand stream ecosystem responses to these drivers, we asked three questions: (Q1) Do temperature and nutrients have univariate, additive, or interactive effects on ecosystem metabolism? (Q2) What is the relative effect of dissolved N versus N:P ratios on N-acquisition pathways and how are these dynamics mediated by temperature? (Q3) How do effects of temperature and nutrients on assemblage composition, biomass accumulation, and N sources combine to shape ecosystem metabolism? To answer these questions, we evaluated biofilm response to manipulations of temperature, N and P supply, and N:P ratio in three stream-side channel experiments. (Q1) In our N-limited study system, temperature and N supply had interactive effects on biofilm biomass, composition, N acquisition, and areal rates of ecosystem metabolism; all generally peaked under warm, moderate-N conditions. Biomass accumulation was more important than cellular efficiency in shaping ecosystem responses. (Q2) N uptake and N<sub>2</sub> fixation increased with temperature and were influenced by N supply, not P or N:P ratio. N<sub>2</sub> fixation was inhibited above 3.9 μM N. (Q3) Temperature and N interacted to shape biofilm metabolism by mediating biofilm biomass accumulation, autotroph taxonomic and functional composition, and N-acquisition pathways and rates. Dinitrogen fixers played a role in mediating these interactions; however, it was smaller than expected, potentially due to the relatively small contribution of N<sub>2</sub> fixation to total N acquisition (<30%). Taken together, our results illustrate the complex pathways through which temperature × nutrient interactions influence stream biofilms and ecosystem metabolism. We show that understanding the effects of warming and nutrient enrichment on coupled C and nutrient cycles in stream ecosystems requires consideration of N acquisition, biofilm assemblage composition, and the context-dependent influence of biomass dynamics on ecosystem fluxes.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 3","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144858608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ming-Qiang Wang, Georg Albert, Douglas Chesters, Helge Bruelheide, Yi Li, Jing-Ting Chen, Sylvia Haider, Shan Li, Goddert von Oheimb, Tobias Proß, Florian Schnabel, Bo Yang, Qing-Song Zhou, Keping Ma, Xiaojuan Liu, Chao-Dong Zhu, Arong Luo, Andreas Schuldt
{"title":"Tree diversity, tree growth, and microclimate independently structure Lepidoptera herbivore community stability","authors":"Ming-Qiang Wang, Georg Albert, Douglas Chesters, Helge Bruelheide, Yi Li, Jing-Ting Chen, Sylvia Haider, Shan Li, Goddert von Oheimb, Tobias Proß, Florian Schnabel, Bo Yang, Qing-Song Zhou, Keping Ma, Xiaojuan Liu, Chao-Dong Zhu, Arong Luo, Andreas Schuldt","doi":"10.1002/ecm.70026","DOIUrl":"10.1002/ecm.70026","url":null,"abstract":"<p>Insect herbivores are integral to the functioning of forest ecosystems. However, increasing herbivore outbreaks highlight the need to understand the factors driving the spatial and temporal stability of herbivore communities. While the longer term consequences of climatic fluctuations are well established in this context, the role of local-scale interactions between herbivores, their host communities, and local microclimates in influencing herbivore stability remains unclear. In this study, we investigated the relative importance of host tree species richness, functional diversity, trait composition, tree growth dynamics, and climate in driving herbivore spatiotemporal stability and the resulting patterns in abundance and diversity. We focused on Lepidoptera caterpillars as very diverse and functionally highly relevant herbivores in forest ecosystems. Tree species richness promoted mean caterpillar abundance, species richness, and phylogenetic diversity by positively affecting their temporal and spatial stability. These effects were mostly direct but counteracted by largely independent and overall negative effects of tree functional diversity, tree growth stability, and microclimate temperature stability. The strength and direction of these effects varied across seasons, reflecting shifts in environmental conditions and herbivore species turnover. The effects of tree diversity on caterpillar communities were related to compositional changes through distinct pathways by reducing taxonomic beta diversity and thus enhancing species richness stability and by increasing phylogenetic beta diversity which may promote asynchrony among distantly related species. Crucially, our findings suggest that tree diversity buffers herbivore communities against climate fluctuations by enhancing their spatiotemporal stability. In consequence, ongoing biodiversity loss may lead to greater fluctuations in herbivore populations and an increased risk of outbreaks. Our study provides novel insights into the mechanisms underlying bottom-up regulation of herbivores, emphasizing the critical role of tree diversity in maintaining stable herbivore communities in a changing climate.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 3","pages":""},"PeriodicalIF":7.5,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144858612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}