Ecological Monographs最新文献

筛选
英文 中文
Ebolavirus evolution and emergence are associated with land use change
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-12-11 DOI: 10.1002/ecm.1641
Christian E. Lange, Thomas R. Barnum, David J. McIver, Matthew LeBreton, Karen Saylors, Charles Kumakamba, Sara Lowes, Eduardo Montero, Robert L. Cohen
{"title":"Ebolavirus evolution and emergence are associated with land use change","authors":"Christian E. Lange, Thomas R. Barnum, David J. McIver, Matthew LeBreton, Karen Saylors, Charles Kumakamba, Sara Lowes, Eduardo Montero, Robert L. Cohen","doi":"10.1002/ecm.1641","DOIUrl":"https://doi.org/10.1002/ecm.1641","url":null,"abstract":"Anthropogenic land use change facilitates disease emergence by altering the interface between humans and pathogen reservoirs and is hypothesized to drive pathogen evolution. Here, we show a positive association between land use change and the evolution and dispersal of <i>Zaire ebolavirus</i> (EBOV) and <i>Sudan ebolavirus</i> (SUDV). We update the phylogeographies of EBOV and SUDV, which reveal that the most recent common ancestor of EBOV was circulating around 1960 in the forests of what is now the northwestern Democratic Republic of the Congo, while the most recent common ancestor of SUDV was circulating around 1958 in the southern Sudanese savanna. Both landscapes underwent significant anthropogenic fragmentation between 1940 and 1960, associated with specific colonial “schemes,” which substantially altered local human settlement patterns and the surrounding vegetation to support intensive cash crop agriculture. Since these disturbances, landscape fragmentation was spatiotemporally associated with the divergence and dispersal of new variants of both viruses into new ecoregions of Africa. These variants segregated geographically along ecoregion boundaries, resembling a pattern observable for other bat-borne viruses. The amino acid changes which characterized each variant disproportionately involved glycosylation-sensitive amino acids in the surface glycoprotein domain responsible for immune evasion and attachment to host cells, suggesting adaptation to new hosts amidst changing landscapes. Our results show that land use change not only increases the risk of spillover, but also impacts the evolution of viruses themselves.","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"41 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climatic versus biotic drivers' effect on fitness varies with range size but not position within range in terrestrial plants
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-12-09 DOI: 10.1002/ecm.1640
Allison M. Louthan, Aaron W. Baumgardner, Johan Ehrlén, Johan P. Dahlgren, Alexander K. Loomis, William F. Morris
{"title":"Climatic versus biotic drivers' effect on fitness varies with range size but not position within range in terrestrial plants","authors":"Allison M. Louthan, Aaron W. Baumgardner, Johan Ehrlén, Johan P. Dahlgren, Alexander K. Loomis, William F. Morris","doi":"10.1002/ecm.1640","DOIUrl":"https://doi.org/10.1002/ecm.1640","url":null,"abstract":"All populations are affected by multiple environmental drivers, including climatic drivers such as temperature or precipitation and biotic drivers such as herbivory or mutualisms. The relative response of a population to each driver is critical to prioritizing threat mitigation for conservation and to understanding whether climatic or biotic drivers most strongly affect fitness. However, the importance of different drivers can vary dramatically across species and across populations of the same species. Theory suggests that the response to climatic versus biotic drivers can be affected by both the species' fundamental niche breadth and the latitude of the population at which the response is measured. However, we have few tests of how these two factors affect relative response to drivers separately, let alone tests of how niche breadth and latitude together influence responses. Here, we use a meta-analysis of published studies on population response to climatic and biotic drivers in terrestrial plants, combined with estimates of climatic niche breadth and position within climatic niche derived from herbarium records, to show that species' niche breadth is the primary determinant of response to climatic versus biotic drivers. Namely, we find that response to climatic drivers changes only minimally with increasing niche breadth, while response to biotic drivers increases with niche breadth. We see similar relationships when considering range size instead of niche breadth. Surprisingly, we find no effects of latitude on the relative effect of climatic versus biotic drivers. Our work suggests that populations of species with small and large ranges experience similar extirpation risks due to the negative impacts of climate change. By contrast, populations of species with large (but not small) ranges may be highly susceptible to changes in densities or distributions of interacting species.","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"10 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142797822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tree species controls over nitrogen and phosphorus cycling in a wet tropical forest
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-12-03 DOI: 10.1002/ecm.1639
Ann E. Russell, Steven J. Hall, Ricardo Bedoya, Stephanie N. Kivlin, Christine V. Hawkes
{"title":"Tree species controls over nitrogen and phosphorus cycling in a wet tropical forest","authors":"Ann E. Russell, Steven J. Hall, Ricardo Bedoya, Stephanie N. Kivlin, Christine V. Hawkes","doi":"10.1002/ecm.1639","DOIUrl":"https://doi.org/10.1002/ecm.1639","url":null,"abstract":"Wet tropical forests play an important role in the global carbon (C) cycle, but given current rates of land-use change, nitrogen (N) and phosphorus (P) limitation could reduce productivity in regenerating forests in this biome. Whereas the strong controls of climate and parent material over forest recovery are well known, the influence of vegetation can be difficult to determine. We addressed species-specific differences in plant traits and their relationships to ecosystem properties and processes, relevant to N and P supply to regenerating vegetation in experimental plantations in a single site in lowland wet forest in Costa Rica. Single-tree species were planted in a randomized block design, such that climate, soil (an Oxisol), and land-use history were similar for all species. In years 15–25 of the experiment, we measured traits regarding N and P acquisition and use in four native, broad-leaved, evergreen tree species, including differential effects on soil pH, in conjunction with biomass and soil stocks and fluxes of N and P. Carbon biomass stocks increased significantly with increasing soil pH (<i>p</i> = 0.0184, previously reported) as did biomass P stocks (<i>p</i> = 0.0011). Despite large soil N pools, biomass P stocks were weakly dependent on traits associated with N acquisition and use (N<sub>2</sub> fixation and leaf C:N, <i>p</i> &lt; 0.09). Mass-balance budgets indicated that soil organic matter (SOM) could supply the N and P accumulated in biomass via the process of SOM mineralization. Secondary soil P pools were weakly correlated with biomass C and P stocks (<i>R</i> = 0.47, <i>p</i> = 0.08) and were large enough to have supplied sufficient P in these rapidly growing plantations, suggesting that alteration of soil pH provided a mechanism for liberation of soil P occluded in organo-mineral soil complexes and thus supply P for plant uptake. These results highlight the importance of considering species' effect on soil pH for restoration projects in highly weathered soils. This study demonstrates mechanisms by which individual species can alter P availability, and thus productivity and C cycling in regenerating humid tropical forests, and the importance of including traits into global models of element cycling.","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"38 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing variability in resource supply over time disrupts plant–pollinator interactions
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-12-03 DOI: 10.1002/ecm.1637
Deanne Redr, Alyssa R. Cirtwill, Riikka Kaartinen, Anna Grunsky, Ian Hogg, Donald McLennan, Claus Rasmussen, Niels Martin Schmidt, Mikko Tiusanen, Johann Wagner, Helena Wirta, Tomas Roslin
{"title":"Increasing variability in resource supply over time disrupts plant–pollinator interactions","authors":"Deanne Redr, Alyssa R. Cirtwill, Riikka Kaartinen, Anna Grunsky, Ian Hogg, Donald McLennan, Claus Rasmussen, Niels Martin Schmidt, Mikko Tiusanen, Johann Wagner, Helena Wirta, Tomas Roslin","doi":"10.1002/ecm.1637","DOIUrl":"https://doi.org/10.1002/ecm.1637","url":null,"abstract":"Insect–plant interactions are key determinants of plant and insect fitness, providing important ecosystem services around the world—including the Arctic region. Recently, it has been suggested that climate warming causes rifts between flower and pollinator phenology. To what extent the progression of pollinators matches the availability of flowers in the Arctic season is poorly known. In this study, we aimed to characterize the community phenology of flowers and insects in a rapidly changing Arctic environment from a descriptive and functional perspective. To this end, we inferred changes in resource availability from both a plant and an insect point of view, by connecting resource and consumer species through a metaweb of all the plant–insect interactions ever observed at a site. Specifically, we: (1) characterized species-specific phenology among plants and insects at two High-Arctic sites—Cambridge Bay in Nunavut, Canada, and Zackenberg in Northeast Greenland; (2) quantified competition for flowers using sticky flower mimics; (3) used information on plant–pollinator interactions to quantify supply and demand for pollinator services versus flower resources during the summer; and (4) compared patterns observed within a focal summer at each site to patterns of long-term change at Zackenberg, using a 25-year time series of plant flowering and insect phenology. Within summers, we found evidence of a general mismatch between supply and demand. Over the 25-year time series, the number of weeks per summer when resource supply fell below a standardized threshold increased significantly over time. In addition, variation in resource availability increased significantly over years. We suggest that the number of resource-poor weeks per year is increasing and becoming less predictable in the High Arctic. This will have important implications for plant pollination, pollinator fitness, and the future of the Arctic ecosystem, as both plants and their pollinators are faced with widening resource gaps.","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"207 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142763170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partitioning species contributions to ecological stability in disturbed communities 划分物种对受干扰群落生态稳定性的贡献
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-11-25 DOI: 10.1002/ecm.1636
Charlotte Kunze, Dominik Bahlburg, Pablo Urrutia-Cordero, Maren Striebel, Egle Kelpsiene, Silke Langenheder, Ian Donohue, Helmut Hillebrand
{"title":"Partitioning species contributions to ecological stability in disturbed communities","authors":"Charlotte Kunze, Dominik Bahlburg, Pablo Urrutia-Cordero, Maren Striebel, Egle Kelpsiene, Silke Langenheder, Ian Donohue, Helmut Hillebrand","doi":"10.1002/ecm.1636","DOIUrl":"https://doi.org/10.1002/ecm.1636","url":null,"abstract":"Ecosystems worldwide are experiencing a range of natural and anthropogenic disturbances, many of which are intensifying as global change accelerates. Ecological responses to those disturbances are determined by both the vulnerabilities of species and their interspecific interactions. Understanding how individual species contribute to the (in-)stability of an aggregated community property, or function, is fundamental to ecological management and conservation. Here, we present a framework to identify species contributions to stability based on their absolute and relative responses to disturbances. Using simulations, we show that these two dimensions enable identification of (de-)stabilizing species and reveal that competitive dominance determines the magnitude of both absolute and relative contributions to stability. Applying our framework to empirical data from a multi-site mesocosm experiment showed that species contributions varied among treatments, sites, and seasons. Despite this dependency on both biotic and abiotic contexts, species contributions were generally constrained by their relative dominance in undisturbed conditions. Rare species contributed positively to stability, while dominant species contributed negatively, indicating compensatory dynamics. Our framework offers an important step toward a more mechanistic understanding of ecological stability based on species performance.","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"1 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Land-use changes influence climate resilience through altered population demography in a social insect 土地利用变化通过改变社会昆虫的人口结构影响气候适应能力
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-11-22 DOI: 10.1002/ecm.1638
Shih-Fan Chan, Dustin R. Rubenstein, Tsung-Wei Wang, Ying-Yu Chen, I-Ching Chen, Dong-Zheng Ni, Wei-Kai Shih, Sheng-Feng Shen
{"title":"Land-use changes influence climate resilience through altered population demography in a social insect","authors":"Shih-Fan Chan, Dustin R. Rubenstein, Tsung-Wei Wang, Ying-Yu Chen, I-Ching Chen, Dong-Zheng Ni, Wei-Kai Shih, Sheng-Feng Shen","doi":"10.1002/ecm.1638","DOIUrl":"https://doi.org/10.1002/ecm.1638","url":null,"abstract":"Biodiversity is threatened by both climate and land-use change. However, the synergistic impacts of these stressors and the underlying mechanisms remain poorly understood. This study seeks to bridge this knowledge gap by testing two competing hypotheses regarding the concept of the realized thermal niche. The Fixed Niche Breadth hypothesis suggests that a species' thermal niche remains constant despite fluctuations in population density resulting from land-use changes. This hypothesis links habitat loss directly to a reduced availability of suitable climate. Conversely, the Habitat Loss-Allee Effect hypothesis posits that land-use changes narrow the realized thermal niche by lowering population densities, which impairs individual fitness in unfavorable temperatures due to the Allee effect—the positive impact of higher population density on individual fitness. To investigate these hypotheses, we developed an individual-based model that integrates the Allee effect to examine how climate and land-use changes affect population density and the thermal niche in social organisms. We empirically tested our model predictions by studying the distribution and cooperative behavior of burying beetles (<i>Nicrophorus nepalensis</i>), which compete with blowflies for carrion resources, along two elevational gradients in Taiwan. These gradients serve as temperature gradients, one in an intact forest and the other in a human-altered landscape with substantial forest loss. Our results support the model predictions and show that landscape forest loss reduces beetle population densities and disrupts their dispersal dynamics, resulting in smaller cooperative groups. This, in turn, limits the beetles' ability to compete with blowflies in warmer environments, resulting in a contraction of the realized thermal niche. Together, our findings support the Habitat Loss-Allee Effect hypothesis while rejecting the Fixed Niche Breadth hypothesis. By highlighting the effects of habitat loss and fragmentation on both intra- and interspecific social interactions, our study improves understanding of species' vulnerability to the combined threats of climate and land-use change. Ultimately, our results underscore the importance of considering the demographic and behavioral consequences of land-use change when assessing species' vulnerability to climate-land-use synergies.","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"20 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The primacy of density-mediated indirect effects in a community of wolves, elk, and aspen 狼、麋鹿和杨树群落中以密度为中介的间接效应的重要性
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-10-23 DOI: 10.1002/ecm.1627
Elaine M. Brice, Eric J. Larsen, Daniel R. Stahler, Daniel R. MacNulty
{"title":"The primacy of density-mediated indirect effects in a community of wolves, elk, and aspen","authors":"Elaine M. Brice, Eric J. Larsen, Daniel R. Stahler, Daniel R. MacNulty","doi":"10.1002/ecm.1627","DOIUrl":"https://doi.org/10.1002/ecm.1627","url":null,"abstract":"The removal or addition of a predator in an ecosystem can trigger a trophic cascade, whereby the predator indirectly influences plants and/or abiotic processes via direct effects on its herbivore prey. A trophic cascade can operate through a density-mediated indirect effect (DMIE), where the predator reduces herbivore density via predation, and/or through a trait-mediated indirect effect (TMIE), where the predator induces an herbivore trait response that modifies the herbivore's effect on plants. Manipulative experiments suggest that TMIEs are an equivalent or more important driver of trophic cascades than are DMIEs. Whether this applies generally in nature is uncertain because few studies have directly compared the magnitudes of TMIEs and DMIEs on natural unmanipulated field patterns. A TMIE is often invoked to explain the textbook trophic cascade involving wolves (<i>Canis lupus</i>), elk (<i>Cervus canadensis</i>), and aspen (<i>Populus tremuloides</i>) in northern Yellowstone National Park. This hypothesis posits that wolves indirectly increase recruitment of young aspen into the overstory primarily through reduced elk browsing in response to spatial variation in wolf predation risk rather than through reduced elk population density. To test this hypothesis, we compared the effects of spatiotemporal variation in wolf predation risk and temporal variation in elk population density on unmanipulated patterns of browsing and recruitment of young aspen across 113 aspen stands over a 21-year period (1999–2019) in northern Yellowstone National Park. Only 2 of 10 indices of wolf predation risk had statistically meaningful effects on browsing and recruitment of young aspen, and these effects were 8–28 times weaker than the effect of elk density. To the extent that temporal variation in elk density was attributable to wolf predation, our results suggest that the wolf–elk–aspen trophic cascade was primarily density-mediated rather than trait-mediated. This aligns with the alternative hypothesis that wolves and other actively hunting predators with broad habitat domains cause DMIEs to dominate whenever prey, such as elk, also have a broad habitat domain. For at least this type of predator–prey community, our study suggests that risk-induced trait responses can be abstracted or ignored while still achieving an accurate understanding of trophic cascades.","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"1 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate and management changes over 40 years drove more stress-tolerant and less ruderal weed communities in vineyards 40 年来的气候和管理变化促使葡萄园中的杂草群落更耐压、更稀疏
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-10-23 DOI: 10.1002/ecm.1631
Marie-Charlotte Bopp, Elena Kazakou, Aurélie Metay, Jacques Maillet, Marie-Claude Quidoz, Léa Genty, Guillaume Fried
{"title":"Climate and management changes over 40 years drove more stress-tolerant and less ruderal weed communities in vineyards","authors":"Marie-Charlotte Bopp, Elena Kazakou, Aurélie Metay, Jacques Maillet, Marie-Claude Quidoz, Léa Genty, Guillaume Fried","doi":"10.1002/ecm.1631","DOIUrl":"https://doi.org/10.1002/ecm.1631","url":null,"abstract":"Spontaneous plant communities have undergone considerable constraints due to human-mediated changes. Understanding how plant communities are shifting in response to land management and climate changes is necessary to predict future ecosystem functioning and improve the resilience of managed ecosystems, such as agroecosystems. Using Mediterranean weed communities as models of managed plant communities in a climate change hotspot, we quantified the extent to which they have shifted from the 1980s to the 2020s in response to climate and management changes in vineyards. The weed communities of the same 40 vineyards in the Montpellier region were surveyed using the same protocol in spring, summer, and autumn, for two years, with a 40-year interval (1978–1979 vs. 2020–2021). In four decades, the annual range of temperatures (i.e., the difference between the warmest month's and the coldest month's mean temperatures) increased by 1.2°C and the summer temperatures by 2°C. Weed management diversified over time with the adoption of mowing that replaced the chemical weeding of interrows. Chemical weeding is now mostly limited to the area under the row. Current weed communities were 41% more abundant, 24% more diverse, and with a less even distribution of abundance across species than the 1980s communities at the vineyard level. Modern communities were composed of more annual species (57% of annual species in the 1980s vs. 80% in the 2020s) with lower community-weighted seed mass and were composed of fewer C4 species. They had higher community-weighted specific leaf area, higher leaf dry matter content, and lower leaf area than the 1980s weed communities. At the community level, the onset of flowering was earlier and the duration of flowering was longer in the 2020s. Climate change induced more stress-tolerant communities in the 2020s while the diversification of weed management practices favored less ruderal communities. This study shows that plant communities are shifting in response to climate change and that land management is a strong lever for action to model more diverse and eventually more desirable weed communities in the future.","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"13 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the chemodiversity of plants: Quantification, variation and ecological function 了解植物的化学多样性:量化、变异和生态功能
IF 7.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-10-14 DOI: 10.1002/ecm.1635
Hampus Petrén, Redouan Adam Anaia, Kruthika Sen Aragam, Andrea Bräutigam, Silvia Eckert, Robin Heinen, Ruth Jakobs, Lina Ojeda-Prieto, Moritz Popp, Rohit Sasidharan, Jörg-Peter Schnitzler, Anke Steppuhn, Frans M. Thon, Sybille B. Unsicker, Nicole M. van Dam, Wolfgang W. Weisser, Meike J. Wittmann, Sol Yepes, Dominik Ziaja, Caroline Müller, Robert R. Junker
{"title":"Understanding the chemodiversity of plants: Quantification, variation and ecological function","authors":"Hampus Petrén,&nbsp;Redouan Adam Anaia,&nbsp;Kruthika Sen Aragam,&nbsp;Andrea Bräutigam,&nbsp;Silvia Eckert,&nbsp;Robin Heinen,&nbsp;Ruth Jakobs,&nbsp;Lina Ojeda-Prieto,&nbsp;Moritz Popp,&nbsp;Rohit Sasidharan,&nbsp;Jörg-Peter Schnitzler,&nbsp;Anke Steppuhn,&nbsp;Frans M. Thon,&nbsp;Sybille B. Unsicker,&nbsp;Nicole M. van Dam,&nbsp;Wolfgang W. Weisser,&nbsp;Meike J. Wittmann,&nbsp;Sol Yepes,&nbsp;Dominik Ziaja,&nbsp;Caroline Müller,&nbsp;Robert R. Junker","doi":"10.1002/ecm.1635","DOIUrl":"10.1002/ecm.1635","url":null,"abstract":"<p>Plants produce a great number of phytochemicals serving a variety of different functions. Recently, the chemodiversity of these compounds (i.e., the diversity of compounds produced by a plant) has been suggested to be an important aspect of the plant phenotype that may shape interactions between plants, their environment, and other organisms. However, we lack an agreement on how to quantify chemodiversity, which complicates conclusions about the functional importance of it. Here, we discuss how chemodiversity (deconstructed into components of richness, evenness and disparity) may relate to different ecologically relevant aspects of the phenotype. Then, we systematically review the literature on chemodiversity to examine methodological practices, explore patterns of variability in diversity across different levels of biological organization, and investigate the functional role of this diversity in interactions between plants and other organisms. Overall, the reviewed literature suggests that high chemodiversity is often beneficial for plants, although a heterogeneity of methodological approaches partly limits what general conclusions can be drawn. Importantly, to support future research on this topic, we provide a framework with a decision tree facilitating choices on which measures of chemodiversity are best used in different contexts and outline key questions and avenues for future research. A more thorough understanding of chemodiversity will provide insights into its evolution and functional role in ecological interactions between plants and their environment.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1635","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Habitat area more consistently affects seagrass faunal communities than fragmentation per se 与破碎化本身相比,栖息地面积对海草动物群落的影响更为一致
IF 7.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-10-09 DOI: 10.1002/ecm.1629
Amy H. Yarnall, Lauren A. Yeager, Cori Lopazanski, Abigail K. Poray, James W. Morley, Allen H. Hurlbert, F. Joel Fodrie
{"title":"Habitat area more consistently affects seagrass faunal communities than fragmentation per se","authors":"Amy H. Yarnall,&nbsp;Lauren A. Yeager,&nbsp;Cori Lopazanski,&nbsp;Abigail K. Poray,&nbsp;James W. Morley,&nbsp;Allen H. Hurlbert,&nbsp;F. Joel Fodrie","doi":"10.1002/ecm.1629","DOIUrl":"10.1002/ecm.1629","url":null,"abstract":"<p>Seminal ecological theories, island biogeography and the single large or several small (SLOSS) reserve debate, examine whether large contiguous habitats conserve biodiversity better than multiple smaller patches. Today, delineating the ecological effects of habitat area versus configuration in a fragmentation context remains difficult, and often confounds efforts to understand proximate and ultimate drivers of community change in response to habitat alteration. We examined how the major components of fragmentation, habitat division versus area loss, independently influence faunal communities using landscapes constructed from artificial seagrass at scales relevant for juvenile estuarine nekton. We deployed 25 unique, 234-m<sup>2</sup> landscapes designed along orthogonal axes: habitat percent cover (i.e., area) and fragmentation per se (i.e., patchiness) to examine their effects on faunal density, community composition, and probability of bait-assay consumption. Faunal sampling occurred in both artificial seagrass and interspaced sandflat matrix. We also examined whether larval-settler density drove faunal density patterns across landscapes. Further, we assessed the relative importance of landscape-scale parameters versus fine-scale complexity–canopy height and epiphyte biomass–in determining faunal densities. We most consistently observed increasing epibenthic fish and macroinvertebrate density with increasing seagrass percent cover. Fragmentation per se only negatively affected epibenthic faunal density within the matrix at low seagrass coverage. Bait consumption increased with seagrass cover, suggesting larger habitats are relative foraging hotspots. Alternatively, benthopelagic fish density was unaffected by habitat parameters, reflecting lower seagrass reliance, or increased matrix tolerance. Community compositions did not vary across landscapes, suggesting that abundant species used landscapes indiscriminately. Finally, the relative importance of habitat parameters shifted across faunal guilds and life stages. Landscape percent cover most affected epibenthic faunal density, but not benthopelagic fish density, and neither pattern was related to settler density. Further, only fine-scale complexity influenced settler densities. Collectively, our results indicate habitat area is a primary, positive driver of faunal densities and generalist consumption, and therefore should be prioritized in seagrass conservation. However, sampling across spatial scales and habitat types revealed nuances in habitat use patterns among faunal guilds and life stages that were not solely area-dependent, illustrating that a variety of landscape configurations support essential nursery functions.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信