代谢理论对生态学的贡献

IF 7.5 1区 环境科学与生态学 Q1 ECOLOGY
Andrew Clarke
{"title":"代谢理论对生态学的贡献","authors":"Andrew Clarke","doi":"10.1002/ecm.70030","DOIUrl":null,"url":null,"abstract":"<p>The metabolic theory of ecology (MTE) has been an important strand in ecology for almost a quarter of a century, renewing interest in the importance of body size and the role of energy. The core of the MTE is a hydrodynamic model of the vertebrate cardiovascular system that predicts allometric scaling of metabolic rate with exponents in the range 0.75 at infinite size to ~0.80 at more realistic sizes, though most studies using the model have assumed an exponent of 0.75. The model is broadly supported by data for resting and routine metabolic rate in ectothermic vertebrates and also a wide range of invertebrates with a circulatory system. Scaling in endotherms is influenced by additional factors, possibly associated with heat flow, and is essentially isometric in prokaryotes, unicellular eukaryotes, and diploblastic invertebrates. This suggests that the presence of any form of circulatory system, even one much simpler than the closed high-pressure system that is the basis of the model, results in allometric scaling of metabolic rate, though the value of the scaling exponent varies across taxa. The temperature sensitivity of metabolism is captured by a simple Boltzmann factor, with an assumed apparent activation energy of 0.65 eV (<i>Q</i><sub>10</sub> ~ 2.4). Empirical data are frequently lower than this, typically in the range 0.52–0.57 eV (<i>Q</i><sub>10</sub> ~ 2.0–2.2). Attempts to broaden the scope of the MTE into areas such as growth, speciation, and life-history have met with mixed success. The major use of the MTE has been to explore the consequences of the central scaling tendency for topics as diverse as migration, acoustic communication, trophic interactions, ecosystem structure, and the energetics of deep-sea or extinct taxa. Although it cannot predict absolute metabolic rates, the MTE has been an important tool for exploring how energy flow influences ecology. Its greatest potential for future use is likely to come from building energetics into ecosystem models and in exploring potential consequences of climate change. In both cases, however, it will be important to encompass the range of empirical data for both scaling and temperature sensitivity rather than the widely assumed canonical values.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 3","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70030","citationCount":"0","resultStr":"{\"title\":\"The contribution of metabolic theory to ecology\",\"authors\":\"Andrew Clarke\",\"doi\":\"10.1002/ecm.70030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The metabolic theory of ecology (MTE) has been an important strand in ecology for almost a quarter of a century, renewing interest in the importance of body size and the role of energy. The core of the MTE is a hydrodynamic model of the vertebrate cardiovascular system that predicts allometric scaling of metabolic rate with exponents in the range 0.75 at infinite size to ~0.80 at more realistic sizes, though most studies using the model have assumed an exponent of 0.75. The model is broadly supported by data for resting and routine metabolic rate in ectothermic vertebrates and also a wide range of invertebrates with a circulatory system. Scaling in endotherms is influenced by additional factors, possibly associated with heat flow, and is essentially isometric in prokaryotes, unicellular eukaryotes, and diploblastic invertebrates. This suggests that the presence of any form of circulatory system, even one much simpler than the closed high-pressure system that is the basis of the model, results in allometric scaling of metabolic rate, though the value of the scaling exponent varies across taxa. The temperature sensitivity of metabolism is captured by a simple Boltzmann factor, with an assumed apparent activation energy of 0.65 eV (<i>Q</i><sub>10</sub> ~ 2.4). Empirical data are frequently lower than this, typically in the range 0.52–0.57 eV (<i>Q</i><sub>10</sub> ~ 2.0–2.2). Attempts to broaden the scope of the MTE into areas such as growth, speciation, and life-history have met with mixed success. The major use of the MTE has been to explore the consequences of the central scaling tendency for topics as diverse as migration, acoustic communication, trophic interactions, ecosystem structure, and the energetics of deep-sea or extinct taxa. Although it cannot predict absolute metabolic rates, the MTE has been an important tool for exploring how energy flow influences ecology. Its greatest potential for future use is likely to come from building energetics into ecosystem models and in exploring potential consequences of climate change. In both cases, however, it will be important to encompass the range of empirical data for both scaling and temperature sensitivity rather than the widely assumed canonical values.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"95 3\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70030\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecm.70030\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecm.70030","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生态学代谢理论(MTE)在近四分之一个世纪以来一直是生态学的一个重要分支,它重新引起了人们对体型重要性和能量作用的兴趣。MTE的核心是脊椎动物心血管系统的流体动力学模型,该模型预测代谢率的异速缩放,其指数范围在无限大时为0.75,在更实际的尺寸下为~0.80,尽管大多数使用该模型的研究都假设指数为0.75。该模型得到了恒温脊椎动物的静息和常规代谢率数据的广泛支持,也得到了广泛的有循环系统的无脊椎动物的支持。恒温动物的缩放受其他因素的影响,可能与热流有关,并且在原核生物,单细胞真核生物和双质体无脊椎动物中基本上是等长的。这表明,任何形式的循环系统的存在,即使是一个比封闭的高压系统(该模型的基础)简单得多的循环系统,都会导致代谢率的异速缩放,尽管缩放指数的值因分类群而异。代谢的温度敏感性由简单的玻尔兹曼因子捕获,假设表观活化能为0.65 eV (Q10 ~ 2.4)。经验数据通常低于此值,通常在0.52-0.57 eV (Q10 ~ 2.0-2.2)范围内。将MTE的范围扩大到生长、物种形成和生命史等领域的尝试取得了不同程度的成功。MTE的主要用途是探索中心标度趋势对各种主题的影响,如迁移、声学通信、营养相互作用、生态系统结构和深海或灭绝分类群的能量学。虽然它不能预测绝对代谢率,但MTE已成为探索能量流如何影响生态的重要工具。它未来最大的应用潜力可能来自于将能量学构建到生态系统模型中,以及探索气候变化的潜在后果。然而,在这两种情况下,重要的是要涵盖结垢和温度敏感性的经验数据范围,而不是广泛假设的标准值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The contribution of metabolic theory to ecology

The contribution of metabolic theory to ecology

The contribution of metabolic theory to ecology

The contribution of metabolic theory to ecology

The contribution of metabolic theory to ecology

The metabolic theory of ecology (MTE) has been an important strand in ecology for almost a quarter of a century, renewing interest in the importance of body size and the role of energy. The core of the MTE is a hydrodynamic model of the vertebrate cardiovascular system that predicts allometric scaling of metabolic rate with exponents in the range 0.75 at infinite size to ~0.80 at more realistic sizes, though most studies using the model have assumed an exponent of 0.75. The model is broadly supported by data for resting and routine metabolic rate in ectothermic vertebrates and also a wide range of invertebrates with a circulatory system. Scaling in endotherms is influenced by additional factors, possibly associated with heat flow, and is essentially isometric in prokaryotes, unicellular eukaryotes, and diploblastic invertebrates. This suggests that the presence of any form of circulatory system, even one much simpler than the closed high-pressure system that is the basis of the model, results in allometric scaling of metabolic rate, though the value of the scaling exponent varies across taxa. The temperature sensitivity of metabolism is captured by a simple Boltzmann factor, with an assumed apparent activation energy of 0.65 eV (Q10 ~ 2.4). Empirical data are frequently lower than this, typically in the range 0.52–0.57 eV (Q10 ~ 2.0–2.2). Attempts to broaden the scope of the MTE into areas such as growth, speciation, and life-history have met with mixed success. The major use of the MTE has been to explore the consequences of the central scaling tendency for topics as diverse as migration, acoustic communication, trophic interactions, ecosystem structure, and the energetics of deep-sea or extinct taxa. Although it cannot predict absolute metabolic rates, the MTE has been an important tool for exploring how energy flow influences ecology. Its greatest potential for future use is likely to come from building energetics into ecosystem models and in exploring potential consequences of climate change. In both cases, however, it will be important to encompass the range of empirical data for both scaling and temperature sensitivity rather than the widely assumed canonical values.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Monographs
Ecological Monographs 环境科学-生态学
CiteScore
12.20
自引率
0.00%
发文量
61
审稿时长
3 months
期刊介绍: The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology. Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message. Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology. Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions. In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信