Deanne Redr, Alyssa R. Cirtwill, Riikka Kaartinen, Anna Grunsky, Ian Hogg, Donald McLennan, Claus Rasmussen, Niels Martin Schmidt, Mikko Tiusanen, Johann Wagner, Helena Wirta, Tomas Roslin
{"title":"Increasing variability in resource supply over time disrupts plant–pollinator interactions","authors":"Deanne Redr, Alyssa R. Cirtwill, Riikka Kaartinen, Anna Grunsky, Ian Hogg, Donald McLennan, Claus Rasmussen, Niels Martin Schmidt, Mikko Tiusanen, Johann Wagner, Helena Wirta, Tomas Roslin","doi":"10.1002/ecm.1637","DOIUrl":"https://doi.org/10.1002/ecm.1637","url":null,"abstract":"Insect–plant interactions are key determinants of plant and insect fitness, providing important ecosystem services around the world—including the Arctic region. Recently, it has been suggested that climate warming causes rifts between flower and pollinator phenology. To what extent the progression of pollinators matches the availability of flowers in the Arctic season is poorly known. In this study, we aimed to characterize the community phenology of flowers and insects in a rapidly changing Arctic environment from a descriptive and functional perspective. To this end, we inferred changes in resource availability from both a plant and an insect point of view, by connecting resource and consumer species through a metaweb of all the plant–insect interactions ever observed at a site. Specifically, we: (1) characterized species-specific phenology among plants and insects at two High-Arctic sites—Cambridge Bay in Nunavut, Canada, and Zackenberg in Northeast Greenland; (2) quantified competition for flowers using sticky flower mimics; (3) used information on plant–pollinator interactions to quantify supply and demand for pollinator services versus flower resources during the summer; and (4) compared patterns observed within a focal summer at each site to patterns of long-term change at Zackenberg, using a 25-year time series of plant flowering and insect phenology. Within summers, we found evidence of a general mismatch between supply and demand. Over the 25-year time series, the number of weeks per summer when resource supply fell below a standardized threshold increased significantly over time. In addition, variation in resource availability increased significantly over years. We suggest that the number of resource-poor weeks per year is increasing and becoming less predictable in the High Arctic. This will have important implications for plant pollination, pollinator fitness, and the future of the Arctic ecosystem, as both plants and their pollinators are faced with widening resource gaps.","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"207 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142763170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charlotte Kunze, Dominik Bahlburg, Pablo Urrutia-Cordero, Maren Striebel, Egle Kelpsiene, Silke Langenheder, Ian Donohue, Helmut Hillebrand
{"title":"Partitioning species contributions to ecological stability in disturbed communities","authors":"Charlotte Kunze, Dominik Bahlburg, Pablo Urrutia-Cordero, Maren Striebel, Egle Kelpsiene, Silke Langenheder, Ian Donohue, Helmut Hillebrand","doi":"10.1002/ecm.1636","DOIUrl":"https://doi.org/10.1002/ecm.1636","url":null,"abstract":"Ecosystems worldwide are experiencing a range of natural and anthropogenic disturbances, many of which are intensifying as global change accelerates. Ecological responses to those disturbances are determined by both the vulnerabilities of species and their interspecific interactions. Understanding how individual species contribute to the (in-)stability of an aggregated community property, or function, is fundamental to ecological management and conservation. Here, we present a framework to identify species contributions to stability based on their absolute and relative responses to disturbances. Using simulations, we show that these two dimensions enable identification of (de-)stabilizing species and reveal that competitive dominance determines the magnitude of both absolute and relative contributions to stability. Applying our framework to empirical data from a multi-site mesocosm experiment showed that species contributions varied among treatments, sites, and seasons. Despite this dependency on both biotic and abiotic contexts, species contributions were generally constrained by their relative dominance in undisturbed conditions. Rare species contributed positively to stability, while dominant species contributed negatively, indicating compensatory dynamics. Our framework offers an important step toward a more mechanistic understanding of ecological stability based on species performance.","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"1 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Land-use changes influence climate resilience through altered population demography in a social insect","authors":"Shih-Fan Chan, Dustin R. Rubenstein, Tsung-Wei Wang, Ying-Yu Chen, I-Ching Chen, Dong-Zheng Ni, Wei-Kai Shih, Sheng-Feng Shen","doi":"10.1002/ecm.1638","DOIUrl":"https://doi.org/10.1002/ecm.1638","url":null,"abstract":"Biodiversity is threatened by both climate and land-use change. However, the synergistic impacts of these stressors and the underlying mechanisms remain poorly understood. This study seeks to bridge this knowledge gap by testing two competing hypotheses regarding the concept of the realized thermal niche. The Fixed Niche Breadth hypothesis suggests that a species' thermal niche remains constant despite fluctuations in population density resulting from land-use changes. This hypothesis links habitat loss directly to a reduced availability of suitable climate. Conversely, the Habitat Loss-Allee Effect hypothesis posits that land-use changes narrow the realized thermal niche by lowering population densities, which impairs individual fitness in unfavorable temperatures due to the Allee effect—the positive impact of higher population density on individual fitness. To investigate these hypotheses, we developed an individual-based model that integrates the Allee effect to examine how climate and land-use changes affect population density and the thermal niche in social organisms. We empirically tested our model predictions by studying the distribution and cooperative behavior of burying beetles (<i>Nicrophorus nepalensis</i>), which compete with blowflies for carrion resources, along two elevational gradients in Taiwan. These gradients serve as temperature gradients, one in an intact forest and the other in a human-altered landscape with substantial forest loss. Our results support the model predictions and show that landscape forest loss reduces beetle population densities and disrupts their dispersal dynamics, resulting in smaller cooperative groups. This, in turn, limits the beetles' ability to compete with blowflies in warmer environments, resulting in a contraction of the realized thermal niche. Together, our findings support the Habitat Loss-Allee Effect hypothesis while rejecting the Fixed Niche Breadth hypothesis. By highlighting the effects of habitat loss and fragmentation on both intra- and interspecific social interactions, our study improves understanding of species' vulnerability to the combined threats of climate and land-use change. Ultimately, our results underscore the importance of considering the demographic and behavioral consequences of land-use change when assessing species' vulnerability to climate-land-use synergies.","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"20 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elaine M. Brice, Eric J. Larsen, Daniel R. Stahler, Daniel R. MacNulty
{"title":"The primacy of density-mediated indirect effects in a community of wolves, elk, and aspen","authors":"Elaine M. Brice, Eric J. Larsen, Daniel R. Stahler, Daniel R. MacNulty","doi":"10.1002/ecm.1627","DOIUrl":"https://doi.org/10.1002/ecm.1627","url":null,"abstract":"The removal or addition of a predator in an ecosystem can trigger a trophic cascade, whereby the predator indirectly influences plants and/or abiotic processes via direct effects on its herbivore prey. A trophic cascade can operate through a density-mediated indirect effect (DMIE), where the predator reduces herbivore density via predation, and/or through a trait-mediated indirect effect (TMIE), where the predator induces an herbivore trait response that modifies the herbivore's effect on plants. Manipulative experiments suggest that TMIEs are an equivalent or more important driver of trophic cascades than are DMIEs. Whether this applies generally in nature is uncertain because few studies have directly compared the magnitudes of TMIEs and DMIEs on natural unmanipulated field patterns. A TMIE is often invoked to explain the textbook trophic cascade involving wolves (<i>Canis lupus</i>), elk (<i>Cervus canadensis</i>), and aspen (<i>Populus tremuloides</i>) in northern Yellowstone National Park. This hypothesis posits that wolves indirectly increase recruitment of young aspen into the overstory primarily through reduced elk browsing in response to spatial variation in wolf predation risk rather than through reduced elk population density. To test this hypothesis, we compared the effects of spatiotemporal variation in wolf predation risk and temporal variation in elk population density on unmanipulated patterns of browsing and recruitment of young aspen across 113 aspen stands over a 21-year period (1999–2019) in northern Yellowstone National Park. Only 2 of 10 indices of wolf predation risk had statistically meaningful effects on browsing and recruitment of young aspen, and these effects were 8–28 times weaker than the effect of elk density. To the extent that temporal variation in elk density was attributable to wolf predation, our results suggest that the wolf–elk–aspen trophic cascade was primarily density-mediated rather than trait-mediated. This aligns with the alternative hypothesis that wolves and other actively hunting predators with broad habitat domains cause DMIEs to dominate whenever prey, such as elk, also have a broad habitat domain. For at least this type of predator–prey community, our study suggests that risk-induced trait responses can be abstracted or ignored while still achieving an accurate understanding of trophic cascades.","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"1 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marie-Charlotte Bopp, Elena Kazakou, Aurélie Metay, Jacques Maillet, Marie-Claude Quidoz, Léa Genty, Guillaume Fried
{"title":"Climate and management changes over 40 years drove more stress-tolerant and less ruderal weed communities in vineyards","authors":"Marie-Charlotte Bopp, Elena Kazakou, Aurélie Metay, Jacques Maillet, Marie-Claude Quidoz, Léa Genty, Guillaume Fried","doi":"10.1002/ecm.1631","DOIUrl":"https://doi.org/10.1002/ecm.1631","url":null,"abstract":"Spontaneous plant communities have undergone considerable constraints due to human-mediated changes. Understanding how plant communities are shifting in response to land management and climate changes is necessary to predict future ecosystem functioning and improve the resilience of managed ecosystems, such as agroecosystems. Using Mediterranean weed communities as models of managed plant communities in a climate change hotspot, we quantified the extent to which they have shifted from the 1980s to the 2020s in response to climate and management changes in vineyards. The weed communities of the same 40 vineyards in the Montpellier region were surveyed using the same protocol in spring, summer, and autumn, for two years, with a 40-year interval (1978–1979 vs. 2020–2021). In four decades, the annual range of temperatures (i.e., the difference between the warmest month's and the coldest month's mean temperatures) increased by 1.2°C and the summer temperatures by 2°C. Weed management diversified over time with the adoption of mowing that replaced the chemical weeding of interrows. Chemical weeding is now mostly limited to the area under the row. Current weed communities were 41% more abundant, 24% more diverse, and with a less even distribution of abundance across species than the 1980s communities at the vineyard level. Modern communities were composed of more annual species (57% of annual species in the 1980s vs. 80% in the 2020s) with lower community-weighted seed mass and were composed of fewer C4 species. They had higher community-weighted specific leaf area, higher leaf dry matter content, and lower leaf area than the 1980s weed communities. At the community level, the onset of flowering was earlier and the duration of flowering was longer in the 2020s. Climate change induced more stress-tolerant communities in the 2020s while the diversification of weed management practices favored less ruderal communities. This study shows that plant communities are shifting in response to climate change and that land management is a strong lever for action to model more diverse and eventually more desirable weed communities in the future.","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"13 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hampus Petrén, Redouan Adam Anaia, Kruthika Sen Aragam, Andrea Bräutigam, Silvia Eckert, Robin Heinen, Ruth Jakobs, Lina Ojeda-Prieto, Moritz Popp, Rohit Sasidharan, Jörg-Peter Schnitzler, Anke Steppuhn, Frans M. Thon, Sybille B. Unsicker, Nicole M. van Dam, Wolfgang W. Weisser, Meike J. Wittmann, Sol Yepes, Dominik Ziaja, Caroline Müller, Robert R. Junker
{"title":"Understanding the chemodiversity of plants: Quantification, variation and ecological function","authors":"Hampus Petrén, Redouan Adam Anaia, Kruthika Sen Aragam, Andrea Bräutigam, Silvia Eckert, Robin Heinen, Ruth Jakobs, Lina Ojeda-Prieto, Moritz Popp, Rohit Sasidharan, Jörg-Peter Schnitzler, Anke Steppuhn, Frans M. Thon, Sybille B. Unsicker, Nicole M. van Dam, Wolfgang W. Weisser, Meike J. Wittmann, Sol Yepes, Dominik Ziaja, Caroline Müller, Robert R. Junker","doi":"10.1002/ecm.1635","DOIUrl":"10.1002/ecm.1635","url":null,"abstract":"<p>Plants produce a great number of phytochemicals serving a variety of different functions. Recently, the chemodiversity of these compounds (i.e., the diversity of compounds produced by a plant) has been suggested to be an important aspect of the plant phenotype that may shape interactions between plants, their environment, and other organisms. However, we lack an agreement on how to quantify chemodiversity, which complicates conclusions about the functional importance of it. Here, we discuss how chemodiversity (deconstructed into components of richness, evenness and disparity) may relate to different ecologically relevant aspects of the phenotype. Then, we systematically review the literature on chemodiversity to examine methodological practices, explore patterns of variability in diversity across different levels of biological organization, and investigate the functional role of this diversity in interactions between plants and other organisms. Overall, the reviewed literature suggests that high chemodiversity is often beneficial for plants, although a heterogeneity of methodological approaches partly limits what general conclusions can be drawn. Importantly, to support future research on this topic, we provide a framework with a decision tree facilitating choices on which measures of chemodiversity are best used in different contexts and outline key questions and avenues for future research. A more thorough understanding of chemodiversity will provide insights into its evolution and functional role in ecological interactions between plants and their environment.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1635","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amy H. Yarnall, Lauren A. Yeager, Cori Lopazanski, Abigail K. Poray, James W. Morley, Allen H. Hurlbert, F. Joel Fodrie
{"title":"Habitat area more consistently affects seagrass faunal communities than fragmentation per se","authors":"Amy H. Yarnall, Lauren A. Yeager, Cori Lopazanski, Abigail K. Poray, James W. Morley, Allen H. Hurlbert, F. Joel Fodrie","doi":"10.1002/ecm.1629","DOIUrl":"10.1002/ecm.1629","url":null,"abstract":"<p>Seminal ecological theories, island biogeography and the single large or several small (SLOSS) reserve debate, examine whether large contiguous habitats conserve biodiversity better than multiple smaller patches. Today, delineating the ecological effects of habitat area versus configuration in a fragmentation context remains difficult, and often confounds efforts to understand proximate and ultimate drivers of community change in response to habitat alteration. We examined how the major components of fragmentation, habitat division versus area loss, independently influence faunal communities using landscapes constructed from artificial seagrass at scales relevant for juvenile estuarine nekton. We deployed 25 unique, 234-m<sup>2</sup> landscapes designed along orthogonal axes: habitat percent cover (i.e., area) and fragmentation per se (i.e., patchiness) to examine their effects on faunal density, community composition, and probability of bait-assay consumption. Faunal sampling occurred in both artificial seagrass and interspaced sandflat matrix. We also examined whether larval-settler density drove faunal density patterns across landscapes. Further, we assessed the relative importance of landscape-scale parameters versus fine-scale complexity–canopy height and epiphyte biomass–in determining faunal densities. We most consistently observed increasing epibenthic fish and macroinvertebrate density with increasing seagrass percent cover. Fragmentation per se only negatively affected epibenthic faunal density within the matrix at low seagrass coverage. Bait consumption increased with seagrass cover, suggesting larger habitats are relative foraging hotspots. Alternatively, benthopelagic fish density was unaffected by habitat parameters, reflecting lower seagrass reliance, or increased matrix tolerance. Community compositions did not vary across landscapes, suggesting that abundant species used landscapes indiscriminately. Finally, the relative importance of habitat parameters shifted across faunal guilds and life stages. Landscape percent cover most affected epibenthic faunal density, but not benthopelagic fish density, and neither pattern was related to settler density. Further, only fine-scale complexity influenced settler densities. Collectively, our results indicate habitat area is a primary, positive driver of faunal densities and generalist consumption, and therefore should be prioritized in seagrass conservation. However, sampling across spatial scales and habitat types revealed nuances in habitat use patterns among faunal guilds and life stages that were not solely area-dependent, illustrating that a variety of landscape configurations support essential nursery functions.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparing the differing effects of host species richness on metrics of disease","authors":"Michael H. Cortez","doi":"10.1002/ecm.1626","DOIUrl":"10.1002/ecm.1626","url":null,"abstract":"<p>Changes in host species richness can alter infection risk and disease levels in multi-host communities. I review theoretical predictions for direct and environmental transmission pathogens about the effects of host additions (or removals) on three commonly used disease metrics: the pathogen community reproduction number <span></span><math>\u0000 <mrow>\u0000 <mfenced>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 </mfenced>\u0000 </mrow></math> and infection prevalence and infected density in a focal host. To extend this prior work and explain why predictions differ between metrics, I analyze Susceptible Infected-Recovered-type models of an environmentally transmitted pathogen and multiple host species that compete for resources. Using local sensitivity analysis, I show how trait-mediated and density-mediated indirect effects drive each metric's response to variation in an added host's ability to transmit a pathogen, the added host's density, and the pathogen transmission mechanism. For each disease metric, the responses are typically predicted by the added host's ability to transmit the pathogen when interspecific competition is weak whereas the responses can be altered by shifts in host densities when interspecific competition is strong. In addition, the three metrics often respond in the same direction. However, the metrics can respond in different directions for three reasons: (1) differences between the ability of exposed individuals to transmit the pathogen over the length of time the individuals are infected (i.e., host competence) and a host population's instantaneous net rate of production of infectious propagules; (2) strong density-mediated feedbacks driven by disease-induced mortality; and (3) host additions or removals cause large changes in focal host density via competition or disease-induced mortality. This study extends and unifies prior theoretical studies, and helps identify the rules governing the context-dependent relationships between host species richness and the three metrics of disease.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jordon C. Tourville, Thomas R. Horton, Martin Dovciak
{"title":"Mycorrhizal fungi as critical biotic filters for tree seedling establishment during species range expansions","authors":"Jordon C. Tourville, Thomas R. Horton, Martin Dovciak","doi":"10.1002/ecm.1634","DOIUrl":"10.1002/ecm.1634","url":null,"abstract":"<p>Global warming has been shifting climatic envelopes of many tree species to higher latitudes and elevations across the globe; however, unsuitable soil biota may inhibit tree migrations into these areas of suitable climate. Specifically, the role of mycorrhizal fungi in facilitating tree seedling establishment beyond natural species range limits has not been fully explored within forest ecosystems. We used three experiments to isolate and quantify the effects of mycorrhizal colonization and common mycorrhizal networks (CMN) on tree seedling survival and growth across (within and beyond) the elevational ranges of two dominant tree species in northeastern North America, which were associated with either arbuscular mycorrhiza (AMF, <i>Acer saccharum</i>) or ectomycorrhiza (EMF, <i>Fagus grandifolia</i>). In order to quantify the influence of mycorrhiza on seedling establishment independent of soil chemistry and climate, we grew seedlings in soils from within and beyond our study species ranges in a greenhouse experiment (GE) as well as in the field using a soil translocation experiment (STE) and another field experiment manipulating seedling connections to potential CMNs (CMNE). Root length colonized, seedling survival and growth, foliar nutrients, and the presence of potential root pathogens were examined as metrics influencing plant performance across species' ranges. Mycorrhizal inoculum from within species ranges, but not from outside, increased seedling survival and growth in a greenhouse setting; however, only seedling survival, and not growth, was significantly improved in field studies. Sustained potential connectivity to AMF networks increased seedling survival across the entire elevational range of <i>A. saccharum</i>. Although seedlings disconnected from a potential CMN did not suffer decreased foliar nutrient levels compared with connected seedlings, disconnected AM seedlings, but not EM seedlings, had significantly higher aluminum concentrations and more potential pathogens present. Our results indicate that mycorrhizal fungi may facilitate tree seedling establishment beyond species range boundaries in this forested ecosystem and that the magnitude of this effect is modulated by the dominant mycorrhizal type present (i.e., AM vs. EM). Thus, despite changing climate conditions beyond species ranges, a lack of suitable mutualists can still limit successful seedling establishment and stall adaptive climate-induced shifts in tree species distributions.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oscar Godoy, Fernando Soler-Toscano, José R. Portillo, José A. Langa
{"title":"The assembly and dynamics of ecological communities in an ever-changing world","authors":"Oscar Godoy, Fernando Soler-Toscano, José R. Portillo, José A. Langa","doi":"10.1002/ecm.1633","DOIUrl":"10.1002/ecm.1633","url":null,"abstract":"<p>Alternative perspectives on the maintenance of biodiversity and the assembly of ecological communities suggest that both processes cannot be investigated simultaneously. In this concept and synthesis, we challenge this view by presenting major theoretical advances in structural stability and permanence theory. These advances, which provide complementary views, allow studying the short- and long-term dynamics of ecological communities as changes in species richness, composition, and abundance. Here, the global attractor, technically named informational structure (IS), is the central element to construct from information of species' intrinsic growth rates and their strength and sign of interactions. The global attractor has four main properties: (1) It contains all the limits of what is feasible and unfeasible of the dynamical behavior of an ecological system, therefore, (2) it provides a thorough characterization of all combinations of species' richness and composition in which species can coexist (i.e., feasible and stable equilibrium), (3) as well as all connections (paths) of assembly between coexisting communities. Importantly, (4) such topology of coexisting communities and their connections changes when environmental (abiotic and biotic) variation affects the ability of species to grow and interact with others. Overall, these four properties allow switching from a traditional evaluation of species coexistence at equilibrium to a much more realistic nonequilibrium perspective where changes in the structure of the global attractor underlie the transient ecological dynamics. Several fields in ecology can benefit from the study of an IS. For instance, it can serve to evaluate community responses after the end of a perturbation, to design restoration trajectories, to study the consequences of biological invasions on the persistence of native species within communities, or to assess ecosystem health status. We illustrate this latter possibility with empirical observations of 7 years in Mediterranean annual grasslands. We document that extremely wet or dry years generate ISs supporting few coexisting communities and few assembly paths. The remaining communities distinguish winners from losers of ongoing climate change and indicate the limits to future community assembly opportunities. A fully tractable operational framework is readily available to understand and predict the assembly and dynamics of ecological communities in an ever-changing world.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1633","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}