北方生态系统生物多样性与生态系统功能的跨界联系

IF 7.1 1区 环境科学与生态学 Q1 ECOLOGY
Anette Teittinen, Miska Luoto, Petteri Muukkonen, Maria-Katariina Myyry, Maria Reiman, Michael Scherer-Lorenzen, Janne Soininen
{"title":"北方生态系统生物多样性与生态系统功能的跨界联系","authors":"Anette Teittinen,&nbsp;Miska Luoto,&nbsp;Petteri Muukkonen,&nbsp;Maria-Katariina Myyry,&nbsp;Maria Reiman,&nbsp;Michael Scherer-Lorenzen,&nbsp;Janne Soininen","doi":"10.1002/ecm.70013","DOIUrl":null,"url":null,"abstract":"<p>Relationships between biodiversity and ecosystem functioning (BEF) are typically investigated separately in different ecosystem types, often neglecting connections across ecosystem boundaries. Here, we examined the cross-boundary relationships between terrestrial and aquatic biodiversity and terrestrial and aquatic ecosystem function (here productivity in terms of biomass). We collected a dataset from 100 Finnish boreal lakes for phytoplankton and zooplankton, and for trees and understory plants in the surrounding forest ecosystems. We explored the connections among climatic, catchment, and local environmental factors, and terrestrial and aquatic biodiversity and productivity using structural equation modeling (SEM). The results indicated cross-boundary connections between the two realms. Terrestrial biodiversity was associated with terrestrial productivity and connected to lake water chemistry directly and indirectly through terrestrial productivity. Water chemistry in turn was linked to aquatic biodiversity and productivity. Within both realms, biodiversity was positively associated with ecosystem productivity. The effects of biodiversity per se were weaker in the aquatic realm, in which nutrient availability was the strongest determinant of productivity. Our findings underscore the importance of exploring cross-ecosystem coupling, as the impacts of several global change drivers, such as climate and land-use change or eutrophication, extend beyond individual realms to transcend ecosystem boundaries. In particular, the combined effects of warming, eutrophication, and increasing terrestrial productivity are likely to increase the import of allochthonous nutrients to boreal lake ecosystems, resulting in enhanced primary productivity therein. As freshwater ecosystems integrate the effects of direct and indirect changes in their catchments, they serve as ideal settings for investigating cross-ecosystem coupling and act as valuable sentinels of climate and other global changes.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-boundary connections of biodiversity and ecosystem functioning in boreal ecosystems\",\"authors\":\"Anette Teittinen,&nbsp;Miska Luoto,&nbsp;Petteri Muukkonen,&nbsp;Maria-Katariina Myyry,&nbsp;Maria Reiman,&nbsp;Michael Scherer-Lorenzen,&nbsp;Janne Soininen\",\"doi\":\"10.1002/ecm.70013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Relationships between biodiversity and ecosystem functioning (BEF) are typically investigated separately in different ecosystem types, often neglecting connections across ecosystem boundaries. Here, we examined the cross-boundary relationships between terrestrial and aquatic biodiversity and terrestrial and aquatic ecosystem function (here productivity in terms of biomass). We collected a dataset from 100 Finnish boreal lakes for phytoplankton and zooplankton, and for trees and understory plants in the surrounding forest ecosystems. We explored the connections among climatic, catchment, and local environmental factors, and terrestrial and aquatic biodiversity and productivity using structural equation modeling (SEM). The results indicated cross-boundary connections between the two realms. Terrestrial biodiversity was associated with terrestrial productivity and connected to lake water chemistry directly and indirectly through terrestrial productivity. Water chemistry in turn was linked to aquatic biodiversity and productivity. Within both realms, biodiversity was positively associated with ecosystem productivity. The effects of biodiversity per se were weaker in the aquatic realm, in which nutrient availability was the strongest determinant of productivity. Our findings underscore the importance of exploring cross-ecosystem coupling, as the impacts of several global change drivers, such as climate and land-use change or eutrophication, extend beyond individual realms to transcend ecosystem boundaries. In particular, the combined effects of warming, eutrophication, and increasing terrestrial productivity are likely to increase the import of allochthonous nutrients to boreal lake ecosystems, resulting in enhanced primary productivity therein. As freshwater ecosystems integrate the effects of direct and indirect changes in their catchments, they serve as ideal settings for investigating cross-ecosystem coupling and act as valuable sentinels of climate and other global changes.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.70013\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.70013","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物多样性与生态系统功能(BEF)之间的关系通常是在不同的生态系统类型中单独研究的,往往忽略了跨生态系统边界的联系。在这里,我们研究了陆地和水生生物多样性以及陆地和水生生态系统功能之间的跨界关系(这里以生物量为单位的生产力)。我们收集了来自100个芬兰北方湖泊的浮游植物和浮游动物,以及周围森林生态系统中的树木和林下植物的数据集。利用结构方程模型(SEM)探讨了气候、流域和当地环境因素与陆地和水生生物多样性和生产力之间的关系。结果表明,这两个领域之间存在跨界联系。陆地生物多样性与陆地生产力相关,并通过陆地生产力直接或间接地与湖水化学相关。水化学反过来又与水生生物多样性和生产力有关。在这两个领域,生物多样性与生态系统生产力呈正相关。在水生领域,生物多样性本身的影响较弱,在水生领域,养分有效性是生产力的最强决定因素。我们的研究结果强调了探索跨生态系统耦合的重要性,因为几个全球变化驱动因素(如气候和土地利用变化或富营养化)的影响超出了单个领域,超越了生态系统边界。特别是,变暖、富营养化和陆地生产力增加的综合效应可能会增加外来营养物质对北方湖泊生态系统的进口,从而提高其初级生产力。由于淡水生态系统整合了其集水区直接和间接变化的影响,它们是研究跨生态系统耦合的理想环境,并充当气候和其他全球变化的宝贵哨兵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-boundary connections of biodiversity and ecosystem functioning in boreal ecosystems

Relationships between biodiversity and ecosystem functioning (BEF) are typically investigated separately in different ecosystem types, often neglecting connections across ecosystem boundaries. Here, we examined the cross-boundary relationships between terrestrial and aquatic biodiversity and terrestrial and aquatic ecosystem function (here productivity in terms of biomass). We collected a dataset from 100 Finnish boreal lakes for phytoplankton and zooplankton, and for trees and understory plants in the surrounding forest ecosystems. We explored the connections among climatic, catchment, and local environmental factors, and terrestrial and aquatic biodiversity and productivity using structural equation modeling (SEM). The results indicated cross-boundary connections between the two realms. Terrestrial biodiversity was associated with terrestrial productivity and connected to lake water chemistry directly and indirectly through terrestrial productivity. Water chemistry in turn was linked to aquatic biodiversity and productivity. Within both realms, biodiversity was positively associated with ecosystem productivity. The effects of biodiversity per se were weaker in the aquatic realm, in which nutrient availability was the strongest determinant of productivity. Our findings underscore the importance of exploring cross-ecosystem coupling, as the impacts of several global change drivers, such as climate and land-use change or eutrophication, extend beyond individual realms to transcend ecosystem boundaries. In particular, the combined effects of warming, eutrophication, and increasing terrestrial productivity are likely to increase the import of allochthonous nutrients to boreal lake ecosystems, resulting in enhanced primary productivity therein. As freshwater ecosystems integrate the effects of direct and indirect changes in their catchments, they serve as ideal settings for investigating cross-ecosystem coupling and act as valuable sentinels of climate and other global changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Monographs
Ecological Monographs 环境科学-生态学
CiteScore
12.20
自引率
0.00%
发文量
61
审稿时长
3 months
期刊介绍: The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology. Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message. Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology. Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions. In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信