Functional macroinvertebrate diversity stabilizes decomposition among leaf litter resources across a river network

IF 7.1 1区 环境科学与生态学 Q1 ECOLOGY
Rubén del Campo, Rosetta C. Blackman, Jan Martini, Thomas Fuß, Lukas Thuile Bistarelli, Mark O. Gessner, Florian Altermatt, Gabriel Singer
{"title":"Functional macroinvertebrate diversity stabilizes decomposition among leaf litter resources across a river network","authors":"Rubén del Campo,&nbsp;Rosetta C. Blackman,&nbsp;Jan Martini,&nbsp;Thomas Fuß,&nbsp;Lukas Thuile Bistarelli,&nbsp;Mark O. Gessner,&nbsp;Florian Altermatt,&nbsp;Gabriel Singer","doi":"10.1002/ecm.70010","DOIUrl":null,"url":null,"abstract":"<p>Biodiversity underpins the functional integrity of ecosystems. At present, our understanding of the relationship between biodiversity and ecosystem functioning (BEF) is essentially based on manipulative experiments. Compelling data at large spatial scales are scarce, especially for river networks. BEF patterns across landscapes are complex because they unfold in the context of environmental gradients and compositional turnover of natural communities. Leaf litter decomposition, a pivotal ecosystem process in streams, is no exception to this context dependency. The dendritic structure of river networks plus the unidirectional water flow shape both environmental conditions and the distribution of leaf resources and consumers. However, it is difficult to predict how spatial gradients of resource and consumer composition can overlap across a river network, and thus govern spatial patterns of decomposition. Here, we investigated the capacity of macroinvertebrate biodiversity to control decomposition rates of heterogeneous leaf resources at the river-network scale. We deployed five litterbags containing either one of four single leaf species or a mixture of all species at 51 sites across the Thur River network (Switzerland). We measured litter decomposition rates, variation of decomposition among leaf resources, and the effect of leaf litter diversity on decomposition. We found that decomposition rates decreased from headwaters to downstream reaches mainly due to the parallel decrease in the abundance of key shredder taxa (namely, <i>Amphinemura</i>, <i>Nemoura</i>, <i>Leuctra</i>, <i>Habroleptoides</i>, and Stenophylacini). Macroinvertebrate diversity had a minor, negative effect on decomposition rates. However, high functional macroinvertebrate diversity at the reach scale reduced the variation of decomposition among leaf resources, thus alleviating nutritional constraints exerted by nutrient-poor leaf resources. Furthermore, litter mixtures were preferably decomposed by communities with low evenness and dominated by a few taxa. These findings point to a critical role of macroinvertebrates in controlling litter decomposition at the network scale beyond environmental effects. While shredder abundance and community composition are key to determining decomposition rates across the river network, functional diversity is important in decreasing the variation of decomposition rates among leaf resources. Our results stress the importance of biodiversity controlling ecosystem functioning not only at the local but also at the river network scale.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.70010","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biodiversity underpins the functional integrity of ecosystems. At present, our understanding of the relationship between biodiversity and ecosystem functioning (BEF) is essentially based on manipulative experiments. Compelling data at large spatial scales are scarce, especially for river networks. BEF patterns across landscapes are complex because they unfold in the context of environmental gradients and compositional turnover of natural communities. Leaf litter decomposition, a pivotal ecosystem process in streams, is no exception to this context dependency. The dendritic structure of river networks plus the unidirectional water flow shape both environmental conditions and the distribution of leaf resources and consumers. However, it is difficult to predict how spatial gradients of resource and consumer composition can overlap across a river network, and thus govern spatial patterns of decomposition. Here, we investigated the capacity of macroinvertebrate biodiversity to control decomposition rates of heterogeneous leaf resources at the river-network scale. We deployed five litterbags containing either one of four single leaf species or a mixture of all species at 51 sites across the Thur River network (Switzerland). We measured litter decomposition rates, variation of decomposition among leaf resources, and the effect of leaf litter diversity on decomposition. We found that decomposition rates decreased from headwaters to downstream reaches mainly due to the parallel decrease in the abundance of key shredder taxa (namely, Amphinemura, Nemoura, Leuctra, Habroleptoides, and Stenophylacini). Macroinvertebrate diversity had a minor, negative effect on decomposition rates. However, high functional macroinvertebrate diversity at the reach scale reduced the variation of decomposition among leaf resources, thus alleviating nutritional constraints exerted by nutrient-poor leaf resources. Furthermore, litter mixtures were preferably decomposed by communities with low evenness and dominated by a few taxa. These findings point to a critical role of macroinvertebrates in controlling litter decomposition at the network scale beyond environmental effects. While shredder abundance and community composition are key to determining decomposition rates across the river network, functional diversity is important in decreasing the variation of decomposition rates among leaf resources. Our results stress the importance of biodiversity controlling ecosystem functioning not only at the local but also at the river network scale.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecological Monographs
Ecological Monographs 环境科学-生态学
CiteScore
12.20
自引率
0.00%
发文量
61
审稿时长
3 months
期刊介绍: The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology. Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message. Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology. Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions. In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信