植物群落中水分和光照竞争维持的性状多样性

IF 7.1 1区 环境科学与生态学 Q1 ECOLOGY
Jacob I. Levine, Jonathan M. Levine, Stephen W. Pacala
{"title":"植物群落中水分和光照竞争维持的性状多样性","authors":"Jacob I. Levine,&nbsp;Jonathan M. Levine,&nbsp;Stephen W. Pacala","doi":"10.1002/ecm.70012","DOIUrl":null,"url":null,"abstract":"<p>Ecological communities frequently exhibit remarkable taxonomic and trait diversity, and this diversity is consistently shown to regulate ecosystem function and resilience. However, ecologists lack a synthetic theory for how this diversity is maintained when species compete for limited resources, hampering our ability to project the future of biodiversity under climate change. Water-limited plant communities are an ideal system in which to study these questions given (1) the diversity of hydraulic traits they exhibit, (2) the importance of this diversity for ecosystem productivity and drought resilience, and (3) forecast changes to precipitation and evapotranspiration under climate change. We developed an analytically tractable model of water and light competition in age-structured perennial plant communities and demonstrated that high diversity is maintained through phenological division of the time between storms. We modeled a system where water arrives in the form of intermittent storms, between which plants consume the limited pool of soil water until it becomes dry enough that they must physiologically shut down to avoid embolism. Competition occurs because individuals, by consuming the shared water pool, cause their competitors to shut down earlier, harming their long-term growth and reproduction. When total precipitation is low, plants in the model compete only for water. However, increases in precipitation can cause the canopy to close and individuals to begin competing for light. Variation among species in the minimum soil water content at which they can sustain growth without embolizing leads to emergent phenological variation, as species will shut down at varying points between storm events. When this variation is paired with a trade-off such that species that shut down early are compensated by faster biomass accumulation, higher fecundity, or lower mortality, there is no limit to the number that can coexist. These results are robust to variation in both total precipitation and the time between storms. The model therefore offers a plausible explanation for how hydraulic trait diversity is maintained in a wide array of natural systems. More broadly, this work illustrates how the phenological division of an apparently singular resource can emerge because of common trade-offs and ultimately foster high taxonomic and trait diversity.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70012","citationCount":"0","resultStr":"{\"title\":\"Trait diversity in plant communities maintained by competition for water and light\",\"authors\":\"Jacob I. Levine,&nbsp;Jonathan M. Levine,&nbsp;Stephen W. Pacala\",\"doi\":\"10.1002/ecm.70012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ecological communities frequently exhibit remarkable taxonomic and trait diversity, and this diversity is consistently shown to regulate ecosystem function and resilience. However, ecologists lack a synthetic theory for how this diversity is maintained when species compete for limited resources, hampering our ability to project the future of biodiversity under climate change. Water-limited plant communities are an ideal system in which to study these questions given (1) the diversity of hydraulic traits they exhibit, (2) the importance of this diversity for ecosystem productivity and drought resilience, and (3) forecast changes to precipitation and evapotranspiration under climate change. We developed an analytically tractable model of water and light competition in age-structured perennial plant communities and demonstrated that high diversity is maintained through phenological division of the time between storms. We modeled a system where water arrives in the form of intermittent storms, between which plants consume the limited pool of soil water until it becomes dry enough that they must physiologically shut down to avoid embolism. Competition occurs because individuals, by consuming the shared water pool, cause their competitors to shut down earlier, harming their long-term growth and reproduction. When total precipitation is low, plants in the model compete only for water. However, increases in precipitation can cause the canopy to close and individuals to begin competing for light. Variation among species in the minimum soil water content at which they can sustain growth without embolizing leads to emergent phenological variation, as species will shut down at varying points between storm events. When this variation is paired with a trade-off such that species that shut down early are compensated by faster biomass accumulation, higher fecundity, or lower mortality, there is no limit to the number that can coexist. These results are robust to variation in both total precipitation and the time between storms. The model therefore offers a plausible explanation for how hydraulic trait diversity is maintained in a wide array of natural systems. More broadly, this work illustrates how the phenological division of an apparently singular resource can emerge because of common trade-offs and ultimately foster high taxonomic and trait diversity.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70012\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.70012\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.70012","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生态群落往往表现出显著的分类和性状多样性,这种多样性一直被证明对生态系统功能和恢复力具有调节作用。然而,当物种竞争有限的资源时,这种多样性是如何维持的,生态学家缺乏一个综合的理论,这阻碍了我们在气候变化下预测生物多样性未来的能力。限水植物群落是研究这些问题的理想系统,因为:(1)它们表现出的水力特性的多样性,(2)这种多样性对生态系统生产力和抗旱能力的重要性,(3)在气候变化下预测降水和蒸散的变化。我们建立了一个可分析的多年生植物群落的水和光竞争模型,并证明了高多样性是通过风暴之间时间的物候划分来维持的。我们模拟了一个系统,在这个系统中,水以间歇性风暴的形式到达,在此期间,植物消耗有限的土壤水,直到它变得足够干燥,它们必须在生理上关闭以避免栓塞。竞争的发生是因为个体通过消耗共享的水池,导致竞争对手更早地关闭,损害了它们的长期生长和繁殖。当总降水量较低时,模型中的植物只竞争水分。然而,降水的增加会导致树冠闭合,个体开始争夺光线。物种之间在维持生长而不发生栓塞的最低土壤含水量上的差异导致了紧急物候变化,因为物种将在风暴事件之间的不同时间点关闭。当这种变化与一种权衡相结合时,即早期关闭的物种得到更快的生物量积累、更高的繁殖力或更低的死亡率的补偿,那么可以共存的物种数量就没有限制。这些结果对于总降水量和风暴间隔时间的变化都是稳健的。因此,该模型为在广泛的自然系统中如何维持水力性状多样性提供了一个合理的解释。更广泛地说,这项工作说明了一个明显单一资源的物候划分是如何由于共同的权衡而出现的,并最终促进了高度的分类和性状多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Trait diversity in plant communities maintained by competition for water and light

Trait diversity in plant communities maintained by competition for water and light

Ecological communities frequently exhibit remarkable taxonomic and trait diversity, and this diversity is consistently shown to regulate ecosystem function and resilience. However, ecologists lack a synthetic theory for how this diversity is maintained when species compete for limited resources, hampering our ability to project the future of biodiversity under climate change. Water-limited plant communities are an ideal system in which to study these questions given (1) the diversity of hydraulic traits they exhibit, (2) the importance of this diversity for ecosystem productivity and drought resilience, and (3) forecast changes to precipitation and evapotranspiration under climate change. We developed an analytically tractable model of water and light competition in age-structured perennial plant communities and demonstrated that high diversity is maintained through phenological division of the time between storms. We modeled a system where water arrives in the form of intermittent storms, between which plants consume the limited pool of soil water until it becomes dry enough that they must physiologically shut down to avoid embolism. Competition occurs because individuals, by consuming the shared water pool, cause their competitors to shut down earlier, harming their long-term growth and reproduction. When total precipitation is low, plants in the model compete only for water. However, increases in precipitation can cause the canopy to close and individuals to begin competing for light. Variation among species in the minimum soil water content at which they can sustain growth without embolizing leads to emergent phenological variation, as species will shut down at varying points between storm events. When this variation is paired with a trade-off such that species that shut down early are compensated by faster biomass accumulation, higher fecundity, or lower mortality, there is no limit to the number that can coexist. These results are robust to variation in both total precipitation and the time between storms. The model therefore offers a plausible explanation for how hydraulic trait diversity is maintained in a wide array of natural systems. More broadly, this work illustrates how the phenological division of an apparently singular resource can emerge because of common trade-offs and ultimately foster high taxonomic and trait diversity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Monographs
Ecological Monographs 环境科学-生态学
CiteScore
12.20
自引率
0.00%
发文量
61
审稿时长
3 months
期刊介绍: The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology. Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message. Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology. Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions. In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信