Jacob I. Levine, Jonathan M. Levine, Stephen W. Pacala
{"title":"植物群落中水分和光照竞争维持的性状多样性","authors":"Jacob I. Levine, Jonathan M. Levine, Stephen W. Pacala","doi":"10.1002/ecm.70012","DOIUrl":null,"url":null,"abstract":"<p>Ecological communities frequently exhibit remarkable taxonomic and trait diversity, and this diversity is consistently shown to regulate ecosystem function and resilience. However, ecologists lack a synthetic theory for how this diversity is maintained when species compete for limited resources, hampering our ability to project the future of biodiversity under climate change. Water-limited plant communities are an ideal system in which to study these questions given (1) the diversity of hydraulic traits they exhibit, (2) the importance of this diversity for ecosystem productivity and drought resilience, and (3) forecast changes to precipitation and evapotranspiration under climate change. We developed an analytically tractable model of water and light competition in age-structured perennial plant communities and demonstrated that high diversity is maintained through phenological division of the time between storms. We modeled a system where water arrives in the form of intermittent storms, between which plants consume the limited pool of soil water until it becomes dry enough that they must physiologically shut down to avoid embolism. Competition occurs because individuals, by consuming the shared water pool, cause their competitors to shut down earlier, harming their long-term growth and reproduction. When total precipitation is low, plants in the model compete only for water. However, increases in precipitation can cause the canopy to close and individuals to begin competing for light. Variation among species in the minimum soil water content at which they can sustain growth without embolizing leads to emergent phenological variation, as species will shut down at varying points between storm events. When this variation is paired with a trade-off such that species that shut down early are compensated by faster biomass accumulation, higher fecundity, or lower mortality, there is no limit to the number that can coexist. These results are robust to variation in both total precipitation and the time between storms. The model therefore offers a plausible explanation for how hydraulic trait diversity is maintained in a wide array of natural systems. More broadly, this work illustrates how the phenological division of an apparently singular resource can emerge because of common trade-offs and ultimately foster high taxonomic and trait diversity.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70012","citationCount":"0","resultStr":"{\"title\":\"Trait diversity in plant communities maintained by competition for water and light\",\"authors\":\"Jacob I. Levine, Jonathan M. Levine, Stephen W. Pacala\",\"doi\":\"10.1002/ecm.70012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ecological communities frequently exhibit remarkable taxonomic and trait diversity, and this diversity is consistently shown to regulate ecosystem function and resilience. However, ecologists lack a synthetic theory for how this diversity is maintained when species compete for limited resources, hampering our ability to project the future of biodiversity under climate change. Water-limited plant communities are an ideal system in which to study these questions given (1) the diversity of hydraulic traits they exhibit, (2) the importance of this diversity for ecosystem productivity and drought resilience, and (3) forecast changes to precipitation and evapotranspiration under climate change. We developed an analytically tractable model of water and light competition in age-structured perennial plant communities and demonstrated that high diversity is maintained through phenological division of the time between storms. We modeled a system where water arrives in the form of intermittent storms, between which plants consume the limited pool of soil water until it becomes dry enough that they must physiologically shut down to avoid embolism. Competition occurs because individuals, by consuming the shared water pool, cause their competitors to shut down earlier, harming their long-term growth and reproduction. When total precipitation is low, plants in the model compete only for water. However, increases in precipitation can cause the canopy to close and individuals to begin competing for light. Variation among species in the minimum soil water content at which they can sustain growth without embolizing leads to emergent phenological variation, as species will shut down at varying points between storm events. When this variation is paired with a trade-off such that species that shut down early are compensated by faster biomass accumulation, higher fecundity, or lower mortality, there is no limit to the number that can coexist. These results are robust to variation in both total precipitation and the time between storms. The model therefore offers a plausible explanation for how hydraulic trait diversity is maintained in a wide array of natural systems. More broadly, this work illustrates how the phenological division of an apparently singular resource can emerge because of common trade-offs and ultimately foster high taxonomic and trait diversity.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70012\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.70012\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.70012","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Trait diversity in plant communities maintained by competition for water and light
Ecological communities frequently exhibit remarkable taxonomic and trait diversity, and this diversity is consistently shown to regulate ecosystem function and resilience. However, ecologists lack a synthetic theory for how this diversity is maintained when species compete for limited resources, hampering our ability to project the future of biodiversity under climate change. Water-limited plant communities are an ideal system in which to study these questions given (1) the diversity of hydraulic traits they exhibit, (2) the importance of this diversity for ecosystem productivity and drought resilience, and (3) forecast changes to precipitation and evapotranspiration under climate change. We developed an analytically tractable model of water and light competition in age-structured perennial plant communities and demonstrated that high diversity is maintained through phenological division of the time between storms. We modeled a system where water arrives in the form of intermittent storms, between which plants consume the limited pool of soil water until it becomes dry enough that they must physiologically shut down to avoid embolism. Competition occurs because individuals, by consuming the shared water pool, cause their competitors to shut down earlier, harming their long-term growth and reproduction. When total precipitation is low, plants in the model compete only for water. However, increases in precipitation can cause the canopy to close and individuals to begin competing for light. Variation among species in the minimum soil water content at which they can sustain growth without embolizing leads to emergent phenological variation, as species will shut down at varying points between storm events. When this variation is paired with a trade-off such that species that shut down early are compensated by faster biomass accumulation, higher fecundity, or lower mortality, there is no limit to the number that can coexist. These results are robust to variation in both total precipitation and the time between storms. The model therefore offers a plausible explanation for how hydraulic trait diversity is maintained in a wide array of natural systems. More broadly, this work illustrates how the phenological division of an apparently singular resource can emerge because of common trade-offs and ultimately foster high taxonomic and trait diversity.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.