Ecological Monographs最新文献

筛选
英文 中文
Herbivore regulation of savanna vegetation: Structural complexity, diversity, and the complexity–diversity relationship 食草动物对热带稀树草原植被的调节:结构复杂性、多样性以及复杂性与多样性之间的关系
IF 7.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-09-29 DOI: 10.1002/ecm.1624
Tyler C. Coverdale, Peter B. Boucher, Jenia Singh, Todd M. Palmer, Jacob R. Goheen, Robert M. Pringle, Andrew B. Davies
{"title":"Herbivore regulation of savanna vegetation: Structural complexity, diversity, and the complexity–diversity relationship","authors":"Tyler C. Coverdale,&nbsp;Peter B. Boucher,&nbsp;Jenia Singh,&nbsp;Todd M. Palmer,&nbsp;Jacob R. Goheen,&nbsp;Robert M. Pringle,&nbsp;Andrew B. Davies","doi":"10.1002/ecm.1624","DOIUrl":"10.1002/ecm.1624","url":null,"abstract":"<p>Large mammalian herbivores exert strong top-down control on plants, which in turn influence most ecological processes. Accordingly, the decline, displacement, or extinction of wild large herbivores in African savannas is expected to alter the physical structure of vegetation, the diversity of plant communities, and downstream ecosystem functions. However, herbivore impacts on vegetation comprise both direct and indirect effects and often depend on herbivore body size and plant type. Understanding how herbivores affect savanna vegetation requires disaggregating the effects of different herbivores and the responses of different plants, as well as accounting for both the structural complexity and composition of plant assemblages. We combined high-resolution Light Detection and Ranging (LiDAR) with field measurements from size-selective herbivore exclosures in Kenya to determine how herbivores affect the diversity and physical structure of vegetation, how these impacts vary with body size and plant type, and whether there are predictable associations between plant diversity and structural complexity. Herbivores generally reduced the diversity and abundance of both overstory and understory plants, though the magnitude of these impacts varied substantially as a function of body size and plant type: only megaherbivores (elephants and giraffes) affected tree cover, whereas medium- and small-bodied herbivores had stronger effects on herbaceous diversity and abundance. We also found evidence that herbivores altered the strength and direction of interactions between trees and herbaceous plants, with signatures of facilitation in the presence of herbivores and of competition in their absence. While megaherbivores uniquely affected tree structure, medium- and small-bodied species had stronger (and complementary) effects on metrics of herbaceous vegetation structure. Plant structural responses to herbivore exclusion were species-specific: of five dominant tree species, just three exhibited significant individual morphological variation across exclosure treatments, and the size class of herbivores responsible for these effects varied across species. Irrespective of exclosure treatment, more species-rich plant communities were more structurally complex. We conclude that the diversity and architecture of savanna vegetation depend on consumptive and nonconsumptive plant–herbivore interactions; the roles of herbivore diversity, body size, and plant traits in mediating those interactions; and a positive feedback between plant diversity and structural complexity.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global change experiments in mountain ecosystems: A systematic review 山区生态系统的全球变化实验:系统回顾
IF 7.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-09-22 DOI: 10.1002/ecm.1632
Matteo Dainese, Harald Crepaz, Roberta Bottarin, Veronika Fontana, Elia Guariento, Andreas Hilpold, Nikolaus Obojes, Chiara Paniccia, Alberto Scotti, Julia Seeber, Michael Steinwandter, Ulrike Tappeiner, Georg Niedrist
{"title":"Global change experiments in mountain ecosystems: A systematic review","authors":"Matteo Dainese,&nbsp;Harald Crepaz,&nbsp;Roberta Bottarin,&nbsp;Veronika Fontana,&nbsp;Elia Guariento,&nbsp;Andreas Hilpold,&nbsp;Nikolaus Obojes,&nbsp;Chiara Paniccia,&nbsp;Alberto Scotti,&nbsp;Julia Seeber,&nbsp;Michael Steinwandter,&nbsp;Ulrike Tappeiner,&nbsp;Georg Niedrist","doi":"10.1002/ecm.1632","DOIUrl":"10.1002/ecm.1632","url":null,"abstract":"<p>Mountain ecosystems play an important role globally as centers of biodiversity and in providing ecosystem services to lowland populations, but are influenced by multiple global change drivers such as climate change, nitrogen deposition, or altered disturbance regimes. As global change is accelerating and the consequences for humans and nature are intensifying, there is an increasing demand for understanding and predicting the impacts and implications of global change on mountain ecosystems. Manipulation experiments are one of the major tools for testing the causal impacts of global change and establishing a mechanistic understanding of how these changes may transform the global biota from single organisms to entire ecosystems. Over the past three decades, hundreds of such experiments have been conducted in mountainous regions worldwide. To strengthen the experimental evidence for the possible ecological consequences of global change, we systematically reviewed the literature on global change experiments in mountains. We first investigated the spread of manipulation experiments to test the effects of different global change drivers on key biological and ecological processes from the organism to the ecosystem level. We then examined and discussed the balance of evidence regarding the impact of these global change drivers on biological and ecological processes, and outlined the possible consequences for mountain ecosystems. Finally, we identified research gaps and proposed future directions for global change research in mountain environments. Among the major drivers, temperature was manipulated most frequently, generally showing consistent strong impacts between biological and ecosystem processes, functional groups, and habitat types. There is also strong evidence suggesting that changes in water and nutrient availability have a direct impact on the life history and functioning of mountain organisms. Despite these important findings, there are several gaps that require urgent attention. These include experiments testing adult trees in tropical and boreal regions, assessing animal responses and biotic interactions, and investigating aquatic environments and soil systems more extensively. A broader approach that integrates experimental data with field observations and relies on international collaboration through coordinated experiments could help address these gaps and provide a more consistent and robust picture of the impacts of global change on mountain ecosystems.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1632","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parasites disrupt a keystone mutualism that underpins the structure, functioning, and resilience of a coastal ecosystem 寄生虫破坏了支撑沿海生态系统结构、功能和恢复力的关键性互惠关系
IF 7.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-09-16 DOI: 10.1002/ecm.1630
Joseph P. Morton, Brian P. Davis, Taylor A. Walker, India H. Haber, Eve H. Adelson, Brian R. Silliman
{"title":"Parasites disrupt a keystone mutualism that underpins the structure, functioning, and resilience of a coastal ecosystem","authors":"Joseph P. Morton,&nbsp;Brian P. Davis,&nbsp;Taylor A. Walker,&nbsp;India H. Haber,&nbsp;Eve H. Adelson,&nbsp;Brian R. Silliman","doi":"10.1002/ecm.1630","DOIUrl":"10.1002/ecm.1630","url":null,"abstract":"<p>Parasites can alter the traits or densities of mutualistic partners, potentially destabilizing mutualistic associations that underpin the structure, functioning, and stability of entire ecosystems. Despite the potentially wide-ranging consequences of such disruptions, no studies have directly manipulated parasite prevalence and/or intensity in a mutualistic partner, nor quantified the resulting community-level effects. Here, we investigated the effects of a common trematode parasite (<i>Cercaria opaca</i>) on the strength of a keystone facultative mutualism in western Atlantic salt marshes between the foundational marsh cordgrass, <i>Spartina alterniflora</i>, and the ribbed mussel, <i>Geukensia demissa</i>. Cordgrass increases mussel survivorship and growth through shading, while mussels enhance cordgrass growth by producing nutrient-rich biodeposits. This mutualistic association also creates conditions that enhance biodiversity and ecosystem functioning, and mediates the ability of foundational plants to resist and recover from extreme drought. We used lab and field assays to show how increasing infection with trematode metacercariae negatively influenced mussel biodeposit production, as well as the strength of mussel shells and byssal attachments. By conducting a field manipulation using experimentally infected mussels, we demonstrated that the mutualistic benefits of mussels to cordgrass growth decreased with increasing trematode infection intensity—a pattern likely generated by reduced mussel biodeposition and enhanced mortality. Additionally, increasing parasite loads in mussels led to predictable decreases in the abundances of benthic invertebrates, as well as in key ecosystem characteristics and process rates (i.e., redox potential and sediment accretion). Finally, a survey of five North Carolina salt marshes demonstrated that infection with <i>C. opaca</i> was most common in mussels in areas experiencing cordgrass die-off due to drought, and that infection intensity decreased with distance from die-off areas. Because the mussel–cordgrass mutualism underpins marsh ecosystem resilience to drought-associated die-off, our results suggest that parasitism may depress recovery from these disturbances. Although this is the first experimental demonstration of parasites indirectly altering community structure and functioning by undermining an ecologically influential mutualism, this type of relationship could be common in nature, given that parasites frequently infect influential mutualists.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An integrative paradigm for building causal knowledge 构建因果知识的综合范式
IF 7.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-09-16 DOI: 10.1002/ecm.1628
James B. Grace
{"title":"An integrative paradigm for building causal knowledge","authors":"James B. Grace","doi":"10.1002/ecm.1628","DOIUrl":"10.1002/ecm.1628","url":null,"abstract":"<p>A core aspiration of the ecological sciences is to determine how systems work, which implies the challenge of developing a causal understanding. Causal inference has long been approached from a statistical perspective, which can be limited and restrictive for a variety of reasons. Ecologists and other natural scientists have historically pursued mechanistic knowledge as an alternative approach to causal understanding, though without explicit reference to the requirements of causal statistics. In this paper, I describe the premises of an expanded paradigm for causal studies, the Integrative Causal Investigation Paradigm, that subsumes causal statistics and mechanistic investigation into a multi-evidence approach. This paradigm is distinct from the one articulated by causal statistics in that it (1) focuses its attention on the long-term goal of building causal knowledge across multiple studies and (2) recognizes the essential role of mechanistic investigations in establishing a causal understanding. The Integrative Paradigm, consequentially, proposes that there are multiple methodological routes to building causal knowledge and thus represents a pluralistic perspective. This paper begins by describing the crux of the problem faced by causal statistics. To understand this problem, it should be recognized that the word <i>causal</i> has multiple meanings and a variety of evidential standards. An expanded vocabulary is developed so as to reduce ambiguities and clarify critical issues. I further show by example that there is an important ingredient typically omitted from consideration in causal statistics, which is the known information related to the mechanisms underlying relationships being evaluated. To address this issue, I describe a procedure, Causal Knowledge Analysis, that involves an evaluation and compilation of existing evidence indicative of causal content and the features of mechanisms. Causal Knowledge Analysis is applied to three example situations to illustrate the process and its potential for contributing to the development of causal knowledge. The implications of adopting the proposed paradigm and associated procedures are discussed and include the potential for advancing ecology, the potential for clarifying causal methodology, and the potential for contributing to predictive forecasting.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1628","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal biology diversity of bee pollinators: Taxonomic, phylogenetic, and plant community-level correlates 蜜蜂授粉者的热生物多样性:分类学、系统发育和植物群落层面的相关性
IF 7.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-09-05 DOI: 10.1002/ecm.1625
Carlos M. Herrera
{"title":"Thermal biology diversity of bee pollinators: Taxonomic, phylogenetic, and plant community-level correlates","authors":"Carlos M. Herrera","doi":"10.1002/ecm.1625","DOIUrl":"10.1002/ecm.1625","url":null,"abstract":"<p>Community-wide assembly of plant–pollinator systems depends on an intricate combination of biotic and abiotic factors, including heterogeneity among pollinators in thermal biology and responses to abiotic factors. Studies on the thermal biology of pollinators have mostly considered only one or a few species of plants or pollinators at a time, and the possible driving role of the diversity in thermal biology of pollinator asemblages at the plant community level remains largely unexplored. More specifically, it is unknown whether diversity in the thermal biology of bees, a major pollinator group worldwide, contributes to the assembly and maintenance of diverse bee communities; broadens the spectrum of possibilities available to bee-pollinated plants; facilitates interspecific partitioning of ecological gradients across habitats, seasons, and time of day; and/or enhance plant pollination success through complementarity effects. The objectives of this study were to assess the diversity in thermal biology of the bee assemblage that pollinates plants in a Mediterranean montane area, evaluate its taxonomic and phylogenetic underpinnings, and elucidate whether there existed seasonal, daily, between-habitat, or floral visitation correlates of bee thermal biology which could contribute to partition ecological gradients among plant and bee species. Thermal biology parameters were obtained in the laboratory (<i>K</i>, intrinsic warming constant) and the field (thoracic and ambient temperature at foraging site, <i>T</i><sub>th</sub> and <i>T</i><sub>air</sub>) on individual bees of a diverse sample (<i>N</i> = 204 bee species) comprising most bee pollinators of the regional plant community. Species-specific thermal biology parameters were combined with quantitative field data on bee pollinators and flower visitation for the regional community of entomophilous plants (<i>N</i> = 292 plant species). Results revealed that the regional bee assemblage harbored considerable diversity in thermal biology features; that such diversity was mostly taxonomically, phylogenetically, and body-size structured; and that the broad interspecific heterogeneity in thermal biology represented in the bee community as a whole eventually translated into daily, seasonal, among-habitat, and flower visitation patterns at the plant community level. This lends support to the hypothesis that broad diversity in thermal biology of bees can enhance opportunities for bee coexistence, spatiotemporal partitioning of floral resources, and plant pollination success.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1625","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The enigmatic life history of the bamboo explained as a strategy to arrest succession 竹子神秘的生活史被解释为一种阻止继承的策略
IF 7.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-09-02 DOI: 10.1002/ecm.1621
Aiyu Zheng, Stephen W. Pacala
{"title":"The enigmatic life history of the bamboo explained as a strategy to arrest succession","authors":"Aiyu Zheng,&nbsp;Stephen W. Pacala","doi":"10.1002/ecm.1621","DOIUrl":"10.1002/ecm.1621","url":null,"abstract":"<p>Bamboos are perennial woody grasses that display an enigmatic mix of traits. Bamboo is highly shade intolerant like early-successional trees. Without secondary xylem, bamboos cannot continue to grow once they reach a maximum height or replace xylem damaged by hydraulic stress and must instead replace each stem after a few years using vegetative propagation via rhizomes. These traits of bamboo would appear to make them inferior to trees in competition for both light and water in all but early-successional wet locations. However, some species competitively exclude trees and form persistent monodominant stands across large areas in tropical and temperate forests, including areas that are not mesic. Moreover, bamboo paradoxically postpones seed production for decades to over a century, and then flowers semelparously and dies synchronously. The delayed reproduction appears to be inconsistent with an early-successional strategy to colonize disturbed areas as soon as they form, while the simultaneous death over large areas appears to be inconsistent with a late-successional strategy to gain and hold space. Bamboo exhibits great diversity in its growth form and life histories along the tropical-temperate geographical cline, with tropical bamboo being taller with shorter rhizome lengths and flowering interval lengths than temperate bamboo. We hypothesize that all of the above characteristics of bamboo are essential elements of competitive strategies to arrest succession in a lineage that lacks secondary xylem. To develop this Arrested Succession Hypothesis, we construct mathematical models of competition for recently disturbed areas between a tree species and a species with bamboo's enigmatic characteristics. We modeled the growth of bamboo genetic individuals from seedlings after seed germination to clonal culms at mass flowering and then placed these individuals in competition with one another and with trees in simple models of competition for light. Results explain how bamboo's traits allow it to persist in forests late in succession despite its hydraulic disadvantages, and form monodominant stands in the temperate zone, but not in tropical forests. They explain why bamboo is semelparous with synchronized reproduction, and why maximum culm size and age, reproductive interval, and rhizome length differ between the tropics and the temperate zone.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1621","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New theoretical and analytical framework for quantifying and classifying ecological niche differentiation 量化和分类生态位差异的新理论和分析框架
IF 7.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-08-11 DOI: 10.1002/ecm.1622
Alfredo Ascanio, Jason T. Bracken, Martin Henry H. Stevens, Tereza Jezkova
{"title":"New theoretical and analytical framework for quantifying and classifying ecological niche differentiation","authors":"Alfredo Ascanio,&nbsp;Jason T. Bracken,&nbsp;Martin Henry H. Stevens,&nbsp;Tereza Jezkova","doi":"10.1002/ecm.1622","DOIUrl":"10.1002/ecm.1622","url":null,"abstract":"<p>Ecological niche differentiation is a process that accompanies lineage diversification and community assembly. Traditionally, the degree of niche differentiation is estimated by contrasting niche hypervolumes of two taxa, reconstructed using ecologically relevant variables. These methods disregard the fact that niches can shift in different ways and directions. Without means of discriminating between different types of niche differentiation, important evolutionary and ecological patterns may go unrecognized. Herein, we introduce a new conceptual and methodological framework that allows quantification and classification of niche differentiation and divergence between taxa along single niche axis. This new method, the Niche Divergence Plane, is based on species' responses to an underlying environmental gradient, from which we derive a two-dimensional plane defined by two indices, niche exclusivity and niche dissimilarity. These two indices identify the proportion of the environmental gradient that is unique to each species, that is, how much of the environmental gradient species do not share (niche breadth exclusivity) and how different the species' responses are along the environmental gradient (niche dissimilarity). Thus, the latter can also be seen as a measure of the differences in niche preference or importance, even when there is significant overlap in niche breadth (i.e., low niche exclusivity). Based on the position of the two indices on the divergence plane, we can distinguish niche conservatism from four other general types of niche divergence: hard, soft, weighted, and nested. We demonstrate that the Niche Divergence Plane complements traditional measures of niche similarity (e.g., Schoener's <i>D</i> or Hellinger's <i>I</i>). Additionally, we show an empirical comparison using the Niche Divergence Plane framework on two <i>Ambystoma</i> salamanders. Overall, we demonstrate that the Niche Divergence Plane is a versatile tool that can be used to complement and expand previous methods of ecological niche comparisons and the study of ecological niche divergence.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1622","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fire exclusion alters forest evapotranspiration: A comprehensive water budget analysis in longleaf pine woodlands 火灾排斥改变了森林蒸散作用:长叶松林地的综合水预算分析
IF 7.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-08-11 DOI: 10.1002/ecm.1623
Steven T. Brantley, O. Stribling Stuber, Dakota L. Holder, R. Scott Taylor
{"title":"Fire exclusion alters forest evapotranspiration: A comprehensive water budget analysis in longleaf pine woodlands","authors":"Steven T. Brantley,&nbsp;O. Stribling Stuber,&nbsp;Dakota L. Holder,&nbsp;R. Scott Taylor","doi":"10.1002/ecm.1623","DOIUrl":"10.1002/ecm.1623","url":null,"abstract":"<p>Forests are critical to water resources, but high evapotranspiration (ET) can reduce water yield. Thinning and prescribed fire reduce forest density and often reduce ET, promoting higher water yield. However, results from such treatments have been inconsistent, possibly because of unknown interactions among individual ET components. We compare water budget components of longleaf pine (<i>Pinus palustris</i> Mill.) woodlands with frequent prescribed fire to the water budget components of fire-excluded stands. We hypothesized that fire exclusion would result in higher ET due to increased midstory transpiration (<i>E</i><sub>t</sub>) and interception (<i>E</i><sub>i</sub>), and higher evaporation from litter (<i>I</i><sub>litter</sub>). Reference plots were burned every two years while treatment plots had fire excluded for 15–20 years. Fire treatments were repeated in two sites representing a soil moisture gradient, noted as mesic and xeric. We measured woody <i>E</i><sub>t</sub> using sap flux, and we modeled groundcover <i>E</i><sub>t</sub> using physiological models. We measured <i>E</i><sub>i</sub> of canopy and groundcover layers, modeled <i>E</i><sub>s</sub> litter biomass, and constructed a total component-based water budget for each site and treatment. Compared with reference plots, midstory <i>E</i><sub>t</sub> was 300%–800% higher in fire exclusion plots. Groundcover <i>E</i><sub>t</sub> was ~80% less than reference treatments, countering the effects of midstory growth on total ET. Stand <i>E</i><sub>i</sub> followed similar trends, with groundcover <i>E</i><sub>i</sub> in reference plots countering the effects of midstory and litter <i>E</i><sub>i</sub> in fire exclusion plots. As expected, total ET in the xeric site was 18% higher in fire exclusion plots. However, ET in the mesic site was 16% lower in the fire exclusion plots due to high groundcover <i>E</i><sub>t</sub> and <i>E</i><sub>i</sub> in reference plots. Thus, our results show that fire exclusion changes total forest ET, but the size and direction of the effect vary depending on the balance between midstory and groundcover transpiration and interception. These results highlight the importance of groundcover in ecosystem function in low-density forests and may help explain inconsistent results from studies of water yields following thinning and fire. While prescribed fire is a valuable tool in forest management, we suggest that the effects of fire on ET are complex and require careful accounting of all water fluxes within a forest ecosystem.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1623","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon dynamics in high-Andean tropical cushion peatlands: A review of geographic patterns and potential drivers 高安第斯热带垫泥炭地的碳动态:地理模式和潜在驱动因素综述
IF 7.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-07-22 DOI: 10.1002/ecm.1614
Mary Carolina García Lino, Simon Pfanzelt, Alejandra I. Domic, Isabell Hensen, Karsten Schittek, Rosa Isela Meneses, Maaike Y. Bader
{"title":"Carbon dynamics in high-Andean tropical cushion peatlands: A review of geographic patterns and potential drivers","authors":"Mary Carolina García Lino,&nbsp;Simon Pfanzelt,&nbsp;Alejandra I. Domic,&nbsp;Isabell Hensen,&nbsp;Karsten Schittek,&nbsp;Rosa Isela Meneses,&nbsp;Maaike Y. Bader","doi":"10.1002/ecm.1614","DOIUrl":"10.1002/ecm.1614","url":null,"abstract":"<p>Peatlands store large amounts of carbon (C), a function potentially threatened by climate change. Peatlands composed of vascular cushion plants are widespread in the northern and central high Andes (páramo, wet and dry puna), but their C dynamics are hardly known. To understand the interplay of the main drivers of peatland C dynamics and to infer geographic patterns across the Andean regions, we addressed the following question: How do topography, hydrology, temperature, past climate variability, and vegetation influence the C dynamics of these peatlands? We summarize the available information on observed spatial and inferred temporal patterns of cushion peatland development in the tropical and subtropical Andes. Based on this, we recognize the following emerging patterns, which all need testing in further studies addressing spatial and temporal patterns of C accumulation: (1) Peatlands in dry climates and those in larger catchments receive higher sediment inputs than peatlands from wet puna and páramo and in small catchments. This results in peat stratigraphies intercalated with mineral layers and affects C accumulation by triggering vegetation changes. (2) High and constant water tables favor C accumulation. Seasonal water level fluctuations are higher in wet and dry puna, in comparison with páramo, leading to more frequent episodes of C loss in puna. (3) Higher temperatures favor C gain under high and constant water availability but also increase C loss under low and fluctuating water levels. (4) C accumulation has been variable through the Holocene, but several peatlands show a recent increase in C accumulation rates. (5) Vegetation affects C dynamics through species-specific differences in productivity and decomposition rate. Because of predicted regional differences in global climate change manifestations (seasonality, permafrost behavior, temperature, precipitation regimes), cushion peatlands from the páramo are expected to mostly continue as C sinks for now, whereas those of the dry puna are more likely to turn to C sources as a consequence of increasing aridification.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 3","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1614","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using mobile acoustic monitoring and false-positive N-mixture models to estimate bat abundance and population trends 利用移动声学监测和假阳性 N 混合物模型估算蝙蝠数量和种群趋势
IF 7.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2024-07-19 DOI: 10.1002/ecm.1617
Bradley J. Udell, Bethany Rose Straw, Susan C. Loeb, Kathryn M. Irvine, Wayne E. Thogmartin, Cori L. Lausen, Jonathan D. Reichard, Jeremy T. H. Coleman, Paul M. Cryan, Winifred F. Frick, Brian E. Reichert
{"title":"Using mobile acoustic monitoring and false-positive N-mixture models to estimate bat abundance and population trends","authors":"Bradley J. Udell,&nbsp;Bethany Rose Straw,&nbsp;Susan C. Loeb,&nbsp;Kathryn M. Irvine,&nbsp;Wayne E. Thogmartin,&nbsp;Cori L. Lausen,&nbsp;Jonathan D. Reichard,&nbsp;Jeremy T. H. Coleman,&nbsp;Paul M. Cryan,&nbsp;Winifred F. Frick,&nbsp;Brian E. Reichert","doi":"10.1002/ecm.1617","DOIUrl":"10.1002/ecm.1617","url":null,"abstract":"<p>Estimating the abundance of unmarked animal populations from acoustic data is challenging due to the inability to identify individuals and the need to adjust for observation biases including detectability (false negatives), species misclassification (false positives), and sampling exposure. Acoustic surveys conducted along mobile transects were designed to avoid counting individuals more than once, where raw counts are commonly treated as an index of abundance. More recently, false-positive abundance models have been developed to estimate abundance while accounting for imperfect detection and misclassification. We adapted these methods to model summertime abundance and trends of three species of bats at multiple spatial scales using acoustic recordings collected along mobile transects by partners of the North American Bat Monitoring Program (NABat) from 2012 to 2020. This multiscale modeling spanned individual transect routes, larger NABat grid cells (10 km × 10 km), and across the entire extent of modeled species ranges. We estimated relationships between species abundances and a suite of abiotic and biotic predictors (landcover types, climatological variables, physiographic diversity, building density, and the impacts of white-nose syndrome [WNS]) and found varying levels of support between species. We present clear evidence of substantial declines in populations of tricolored bats (<i>Perimyotis subflavus</i>) and little brown bats (<i>Myotis lucifugus</i>), declines that corresponded in space and time with the progression of WNS, a devastating disease of hibernating bats. In contrast, our analysis revealed that similar population-wide declines probably have not occurred in big brown bats (<i>Eptesicus fuscus</i>), a species known to be less affected by WNS. This study provides the first abundance-based species distribution predictions and population trends for bats in their summer ranges in North America. These models will probably be applicable to assessing wildlife populations in other monitoring programs where acoustic data are used or where false-negative and false-positive detections are present. Finally, our abundance framework (as a spatial point pattern process) can serve as a foundation from which more sophisticated integrated species distribution models that incorporate additional streams of monitoring data (e.g., stationary acoustics, captures) can be developed for North American bats.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 4","pages":""},"PeriodicalIF":7.1,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1617","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信