Ecological Monographs最新文献

筛选
英文 中文
Intraspecific trait variability is a key feature underlying high Arctic plant community resistance to climate warming 种内性状变异是北极高海拔植物群落抵御气候变暖的关键特征
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2022-09-30 DOI: 10.1002/ecm.1555
Ingibjörg S. Jónsdóttir, Aud H. Halbritter, Casper T. Christiansen, Inge H. J. Althuizen, Siri V. Haugum, Jonathan J. Henn, Katrín Björnsdóttir, Brian Salvin Maitner, Yadvinder Malhi, Sean T. Michaletz, Ruben E. Roos, Kari Klanderud, Hanna Lee, Brian J. Enquist, Vigdis Vandvik
{"title":"Intraspecific trait variability is a key feature underlying high Arctic plant community resistance to climate warming","authors":"Ingibjörg S. Jónsdóttir,&nbsp;Aud H. Halbritter,&nbsp;Casper T. Christiansen,&nbsp;Inge H. J. Althuizen,&nbsp;Siri V. Haugum,&nbsp;Jonathan J. Henn,&nbsp;Katrín Björnsdóttir,&nbsp;Brian Salvin Maitner,&nbsp;Yadvinder Malhi,&nbsp;Sean T. Michaletz,&nbsp;Ruben E. Roos,&nbsp;Kari Klanderud,&nbsp;Hanna Lee,&nbsp;Brian J. Enquist,&nbsp;Vigdis Vandvik","doi":"10.1002/ecm.1555","DOIUrl":"10.1002/ecm.1555","url":null,"abstract":"<p>In the high Arctic, plant community species composition generally responds slowly to climate warming, whereas less is known about the community functional trait responses and consequences for ecosystem functioning. The slow species turnover and large distribution ranges of many Arctic plant species suggest a significant role of intraspecific trait variability in functional responses to climate change. Here we compare taxonomic and functional community compositional responses to a long-term (17-year) warming experiment in Svalbard, Norway, replicated across three major high Arctic habitats shaped by topography and contrasting snow regimes. We observed taxonomic compositional changes in all plant communities over time. Still, responses to experimental warming were minor and most pronounced in the drier habitats with relatively early snowmelt timing and long growing seasons (<i>Cassiope</i> and <i>Dryas</i> heaths). The habitats were clearly separated in functional trait space, defined by 12 size- and leaf economics-related traits, primarily due to interspecific trait variation. Functional traits also responded to experimental warming, most prominently in the <i>Dryas</i> heath and mostly due to intraspecific trait variation. Leaf area and mass increased and leaf δ<sup>15</sup>N decreased in response to the warming treatment. Intraspecific trait variability ranged between 30% and 71% of the total trait variation, reflecting the functional resilience of those communities, dominated by long-lived plants, due to either phenotypic plasticity or genotypic variation, which most likely underlies the observed resistance of high Arctic vegetation to climate warming. We further explored the consequences of trait variability for ecosystem functioning by measuring peak season CO<sub>2</sub> fluxes. Together, environmental, taxonomic, and functional trait variables explained a large proportion of the variation in net ecosystem exchange (NEE), which increased when intraspecific trait variation was accounted for. In contrast, even though ecosystem respiration and gross ecosystem production both increased in response to warming across habitats, they were mainly driven by the direct kinetic impacts of temperature on plant physiology and biochemical processes. Our study shows that long-term experimental warming has a modest but significant effect on plant community functional trait composition and suggests that intraspecific trait variability is a key feature underlying high Arctic ecosystem resistance to climate warming.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1555","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43000659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Applying the structural causal model framework for observational causal inference in ecology 结构因果模型框架在生态学观测因果推理中的应用
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2022-09-22 DOI: 10.1002/ecm.1554
Suchinta Arif, M. Aaron MacNeil
{"title":"Applying the structural causal model framework for observational causal inference in ecology","authors":"Suchinta Arif,&nbsp;M. Aaron MacNeil","doi":"10.1002/ecm.1554","DOIUrl":"https://doi.org/10.1002/ecm.1554","url":null,"abstract":"<p>Ecologists are often interested in answering causal questions from observational data but generally lack the training to appropriately infer causation. When applying statistical analysis (e.g., generalized linear model) on observational data, common statistical adjustments can often lead to biased estimates between variables of interest due to processes such as confounding, overcontrol, and collider bias. To overcome these limitations, we present an overview of structural causal modeling (SCM), an emerging causal inference framework that can be used to determine cause-and-effect relationships from observational data. The SCM framework uses directed acyclic graphs (DAGs) to visualize researchers' assumptions about the causal structure of a system or process under study. Following this, a DAG-based graphical rule known as the backdoor criterion can be applied to determine statistical adjustments (or lack thereof) required to determine causal relationships from observational data. In the presence of unobserved confounding variables, an additional rule called the frontdoor criterion can be employed to determine causal effects. Here, we use simulated ecological examples to review how the backdoor and frontdoor criteria can return accurate causal estimates between variables of interest, as well as how biases can arise when these criteria are not used. We further provide an overview of studies that have applied the SCM framework in ecology. SCM, along with its application of DAGs, has been widely used in other disciplines to make valid causal inferences from observational data. Their use in ecology holds tremendous potential for quantifying causal relationships and investigating a range of ecological questions without randomized experiments.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50141322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Applying the structural causal model ( SCM ) framework for observational causal inference in ecology 结构因果模型(SCM)框架在生态学观测因果推理中的应用
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2022-09-22 DOI: 10.1002/ecm.1554
Suchinta Arif, M. MacNeil
{"title":"Applying the structural causal model (\u0000 SCM\u0000 ) framework for observational causal inference in ecology","authors":"Suchinta Arif, M. MacNeil","doi":"10.1002/ecm.1554","DOIUrl":"https://doi.org/10.1002/ecm.1554","url":null,"abstract":"","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49449955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Temporal shifts in avian phenology across the circannual cycle in a rapidly changing climate: A global meta-analysis 在快速变化的气候中,鸟类在全年周期中的时间变化:一项全球荟萃分析
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2022-09-04 DOI: 10.1002/ecm.1552
Andrea Romano, László Zsolt Garamszegi, Diego Rubolini, Roberto Ambrosini
{"title":"Temporal shifts in avian phenology across the circannual cycle in a rapidly changing climate: A global meta-analysis","authors":"Andrea Romano,&nbsp;László Zsolt Garamszegi,&nbsp;Diego Rubolini,&nbsp;Roberto Ambrosini","doi":"10.1002/ecm.1552","DOIUrl":"10.1002/ecm.1552","url":null,"abstract":"<p>The alteration of the timing of biological events is one of the best documented effects of climate change, with overwhelming evidence across taxa. Many studies have investigated the phenology of consumers, especially birds. However, most of these studies have focused on specific phenophases, whereas a global analysis of avian phenological trends during recent climate change across different phases of the circannual cycle is still lacking. Here, we performed a comprehensive meta-analytic synthesis of the phenological responses (temporal shifts in days year<sup>−1</sup>) of birds across different phenophases (prebreeding migration, breeding, and postbreeding migration) by summarizing more than 5500 time series from 684 species from five continents during 1811–2018. Our results confirm that avian taxa have advanced prebreeding migration and breeding by ~2–3 days per decade, whereas no significant temporal changes in the timing of postbreeding migration were documented. Advancement in the timing of prebreeding migration and breeding strongly depended on migratory behavior, with the advance being the weakest for long-distance migrants and the strongest for resident species. Diet generalists and primary consumers tended to advance prebreeding migration timing more than species with different dietary specializations. Increasing body size resulted in a larger advancement in the onset (but not in the mean date) of prebreeding migration and breeding, whereas phenological advances were larger in the northern than in the southern hemisphere. Our synthesis, covering most of the world, highlighted previously unappreciated patterns in avian phenological shifts over time, suggesting that specific life-history or ecological traits may drive different responses to climate change.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1552","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45207057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Stable pollination service in a generalist high Arctic community despite the warming climate 在气候变暖的情况下,北极高纬度社区的稳定授粉服务
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2022-08-14 DOI: 10.1002/ecm.1551
Alyssa R. Cirtwill, Riikka Kaartinen, Claus Rasmussen, Deanne Redr, Helena Wirta, Jens M. Olesen, Mikko Tiusanen, Gavin Ballantyne, Helen Cunnold, Graham N. Stone, Niels Martin Schmidt, Tomas Roslin
{"title":"Stable pollination service in a generalist high Arctic community despite the warming climate","authors":"Alyssa R. Cirtwill,&nbsp;Riikka Kaartinen,&nbsp;Claus Rasmussen,&nbsp;Deanne Redr,&nbsp;Helena Wirta,&nbsp;Jens M. Olesen,&nbsp;Mikko Tiusanen,&nbsp;Gavin Ballantyne,&nbsp;Helen Cunnold,&nbsp;Graham N. Stone,&nbsp;Niels Martin Schmidt,&nbsp;Tomas Roslin","doi":"10.1002/ecm.1551","DOIUrl":"10.1002/ecm.1551","url":null,"abstract":"<p>Insects provide key pollination services in most terrestrial biomes, but this service depends on a multistep interaction between insect and plant. An insect needs to visit a flower, receive pollen from the anthers, move to another conspecific flower, and finally deposit the pollen on a receptive stigma. Each of these steps may be affected by climate change, and focusing on only one of them (e.g., flower visitation) may miss important signals of change in service provision. In this study, we combine data on visitation, pollen transport, and single-visit pollen deposition to estimate functional outcomes in the high Arctic plant-pollinator network of Zackenberg, Northeast Greenland, a model system for global warming–associated impacts in pollination services. Over two decades of rapid climate warming, we sampled the network repeatedly: in 1996, 1997, 2010, 2011, and 2016. Although the flowering plant and insect communities and their interactions varied substantially between years, as expected based on highly variable Arctic weather, there was no detectable directional change in either the structure of flower-visitor networks or estimated pollen deposition. For flower-visitor networks compiled over a single week, species phenologies caused major within-year variation in network structure despite consistency across years. Weekly networks for the middle of the flowering season emerged as especially important because most pollination service can be expected to be provided by these large, highly nested networks. Our findings suggest that pollination ecosystem service in the high Arctic is remarkably resilient. This resilience may reflect the plasticity of Arctic biota as an adaptation to extreme and unpredictable weather. However, most pollination service was contributed by relatively few fly taxa (Diptera: <i>Spilogona sanctipauli</i> and <i>Drymeia segnis</i> [Muscidae] and species of <i>Rhamphomyia</i> [Empididae]). If these key pollinators are negatively affected by climate change, network structure and the pollination service that depends on it would be seriously compromised.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1551","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9272825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Climate change expected to improve digestive rate and trigger range expansion in outbreaking locusts 气候变化预计将提高蝗虫的消化率并引发蝗虫活动范围的扩大
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2022-08-12 DOI: 10.1002/ecm.1550
Jacob P. Youngblood, Arianne J. Cease, Stav Talal, Fernando Copa, Hector E. Medina, Julio E. Rojas, Eduardo V. Trumper, Michael J. Angilletta Jr., Jon F. Harrison
{"title":"Climate change expected to improve digestive rate and trigger range expansion in outbreaking locusts","authors":"Jacob P. Youngblood,&nbsp;Arianne J. Cease,&nbsp;Stav Talal,&nbsp;Fernando Copa,&nbsp;Hector E. Medina,&nbsp;Julio E. Rojas,&nbsp;Eduardo V. Trumper,&nbsp;Michael J. Angilletta Jr.,&nbsp;Jon F. Harrison","doi":"10.1002/ecm.1550","DOIUrl":"10.1002/ecm.1550","url":null,"abstract":"<p>Global climate change will probably exacerbate crop losses from insect pests, reducing agricultural production, and threatening food security. To predict where crop losses will occur, scientists have mainly used correlative models of species' distributions, but such models are unreliable when extrapolated to future environments. To minimize extrapolation, we developed mechanistic and hybrid models that explicitly capture range-limiting processes, and we explored how incorporating mechanisms altered the projected impacts of climate change for an agricultural pest, the South American locust (<i>Schistocerca cancellata</i>). Because locusts are generalist herbivores surrounded by food, their population growth may be limited by thermal effects on digestion more than food availability. To incorporate this mechanism into a distribution model, we measured the thermal effects on the consumption and defecation of field-captured locusts and used these data to model energy gain in current and future climates. We then created hybrid models by using outputs of the mechanistic model as predictor variables in correlative models, estimating the potential distribution of gregarious outbreaking locusts based on multiple predictor sets, modeling algorithms, and climate scenarios. Based on the mechanistic model, locusts can assimilate relatively high amounts of energy throughout temperate and tropical South America; however, correlative and hybrid modeling revealed that most tropical areas are unsuitable for locusts. When estimating current distributions, the top-ranked model was always the one fit with mechanistic predictors (i.e., the hybrid model). When projected to future climates, top-ranked hybrid models projected range expansions that were 23%–30% points smaller than those projected by correlative models. Therefore, a combination of the correlative and mechanistic approaches bracketed the potential outcomes of climate change and enhanced confidence where model projections agreed. Because all models projected a poleward range expansion under climate change, agriculturists should consider enhanced monitoring and the management of locusts near the southern margin of the range.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43688047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Do Nearctic hover flies (Diptera: Syrphidae) engage in long-distance migration? An assessment of evidence and mechanisms 新北极飞蝇(双翅目:蚜蝇科)是否参与长途迁徙?对证据和机制的评估
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2022-07-19 DOI: 10.1002/ecm.1542
C. Scott Clem, Keith A. Hobson, Alexandra N. Harmon-Threatt
{"title":"Do Nearctic hover flies (Diptera: Syrphidae) engage in long-distance migration? An assessment of evidence and mechanisms","authors":"C. Scott Clem,&nbsp;Keith A. Hobson,&nbsp;Alexandra N. Harmon-Threatt","doi":"10.1002/ecm.1542","DOIUrl":"10.1002/ecm.1542","url":null,"abstract":"<p>Long-distance insect migration is poorly understood despite its tremendous ecological and economic importance. As a group, Nearctic hover flies (Diptera: Syrphidae: Syrphinae), which are crucial pollinators as adults and biological control agents as larvae, are almost entirely unrecognized as migratory despite examples of highly migratory behavior among several Palearctic species. Here, we examined evidence and mechanisms of migration for four hover fly species (<i>Allograpta obliqua</i>, <i>Eupeodes americanus</i>, <i>Syrphus rectus</i>, and <i>Syrphus ribesii</i>) common throughout eastern North America using stable hydrogen isotope (δ<sup>2</sup>H) measurements of chitinous tissue, morphological assessments, abundance estimations, and cold-tolerance assays. Although further studies are needed, nonlocal isotopic values obtained from hover fly specimens collected in central Illinois support the existence of long-distance fall migratory behavior in <i>Eu. americanus</i>, and to a lesser extent <i>S. ribesii</i> and <i>S. rectus</i>. Elevated abundance of <i>Eu. americanus</i> during the expected autumn migratory period further supports the existence of such behavior. Moreover, high phenotypic plasticity of morphology associated with dispersal coupled with significant differences between local and nonlocal specimens suggest that <i>Eu. americanus</i> exhibits a unique suite of morphological traits that decrease costs associated with long-distance flight. Finally, compared with the ostensibly nonmigratory <i>A. obliqua</i>, <i>Eu. americanus</i> was less cold tolerant, a factor that may be associated with migratory behavior. Collectively, our findings imply that fall migration occurs in Nearctic hover flies, but we consider the methodological limitations of our study in addition to potential ecological and economic consequences of these novel findings.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1542","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47941624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Allometry of behavior and niche differentiation among congeneric African antelopes 同种非洲羚羊的异速行为和生态位分化
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2022-07-14 DOI: 10.1002/ecm.1549
Joshua H. Daskin, Justine A. Becker, Tyler R. Kartzinel, Arjun B. Potter, Reena H. Walker, Fredrik A. A. Eriksson, Courtney Buoncore, Alexander Getraer, Ryan A. Long, Robert M. Pringle
{"title":"Allometry of behavior and niche differentiation among congeneric African antelopes","authors":"Joshua H. Daskin,&nbsp;Justine A. Becker,&nbsp;Tyler R. Kartzinel,&nbsp;Arjun B. Potter,&nbsp;Reena H. Walker,&nbsp;Fredrik A. A. Eriksson,&nbsp;Courtney Buoncore,&nbsp;Alexander Getraer,&nbsp;Ryan A. Long,&nbsp;Robert M. Pringle","doi":"10.1002/ecm.1549","DOIUrl":"10.1002/ecm.1549","url":null,"abstract":"<p>Size-structured differences in resource use stabilize species coexistence in animal communities, but what behavioral mechanisms underpin these niche differences? Behavior is constrained by morphological and physiological traits that scale allometrically with body size, yet the degree to which behaviors exhibit allometric scaling remains unclear; empirical datasets often encompass broad variation in environmental context and phylogenetic history, which complicates the detection and interpretation of scaling relationships between size and behavior. We studied the movement and foraging behaviors of three sympatric, congeneric spiral-horned antelope species (<i>Tragelaphus</i> spp.) that differ in body mass—bushbuck (26–40 kg), nyala (57–83 kg), and kudu (80–142 kg)—in an African savanna ecosystem where (i) food was patchily distributed due to ecosystem engineering by fungus-farming termites and (ii) predation risk was low due to the extirpation of several large carnivores. Because foraging behavior is directly linked to traits that scale allometrically with size (e.g., metabolic rate, locomotion), we hypothesized that habitat use and diet selection would likewise exhibit nonlinear scaling relationships. All three antelope species selected habitat near termitaria, which are hotspots of abundant, high-quality forage. Experimental removal of forage from termite mounds sharply reduced use of those mounds by bushbuck, confirming that habitat selection was resource driven. Strength of selection for termite mounds scaled negatively and nonlinearly with body mass, as did recursion (frequency with which individuals revisited locations), whereas home-range area and mean step length scaled positively and nonlinearly with body mass. All species disproportionately ate mound-associated plant taxa; nonetheless, forage selectivity and dietary composition, richness, and quality all differed among species, reflecting the partitioning of shared food resources. Dietary protein exhibited the theoretically predicted negative allometric relationship with body mass, whereas digestible-energy content scaled positively. Our results demonstrate cryptic size-based separation along spatial and dietary niche axes—despite superficial similarities among species—consistent with the idea that body-size differentiation is driven by selection for divergent resource-acquisition strategies, which in turn underpin coexistence. Foraging and space-use behaviors were nonlinearly related to body mass, supporting the hypothesis that behavior scales allometrically with size. However, explaining the variable functional forms of these relationships is a challenge for future research.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1549","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47434994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Toward a “modern coexistence theory” for the discrete and spatial 向着离散与空间的“现代共存理论”迈进
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2022-07-10 DOI: 10.1002/ecm.1548
Stephen P. Ellner, Robin E. Snyder, Peter B. Adler, Giles Hooker
{"title":"Toward a “modern coexistence theory” for the discrete and spatial","authors":"Stephen P. Ellner,&nbsp;Robin E. Snyder,&nbsp;Peter B. Adler,&nbsp;Giles Hooker","doi":"10.1002/ecm.1548","DOIUrl":"10.1002/ecm.1548","url":null,"abstract":"<p>The usual theoretical condition for coexistence is that each species in a community can increase when it is rare (mutual invasibility). Traditional coexistence theory implicitly assumes that the invading species is common enough that we can ignore demographic stochasticity but rare enough that it does not compete with itself, even after it has reached a stationary spatial distribution. However, short-distance dispersal of discrete individuals leads to locally dense population clusters, and existing theory breaks down. We have an intuition that when we account for invader–invader competition, shorter-range dispersal should reduce the invader's ability to escape competition, but exactly how does this translate into lower population growth? And how will invader discreteness affect outcomes? We need a way of partitioning the contributions to coexistence, but current modern coexistence theory (MCT) does not apply under these conditions. Here we present a computationally based partitioning method to quantify the contributions to coexistence from different mechanisms, as in MCT. We also build up an intuition for how invader clumping and discreteness will affect these contributions by analyzing a case study, a lattice-based spatial lottery model. We first consider fluctuation-dependent coexistence, partitioning the contributions of variable environment, variable competition, demographic stochasticity, and their correlations and interactions. Our second example examines fluctuation-independent coexistence maintained by a fecundity–survival trade-off, and partitions the contributions to coexistence from interspecific differences in fecundity, in mortality, and in dispersal. We find that demographic stochasticity harms an invader, but only slightly. Localized invader dispersal, on the other hand, can have a strong effect. When invaders are more clumped, they compete with each other more intensely when rare, so they too become limited by environment-competition covariance. More invader clumping also means that variation in competition changes from helping the invader to harming it. More broadly, invader clumping is likely to weaken any coexistence mechanism that relies on the invader escaping competition from the resident, because invader clumping means that the resident is no longer the only source of competition.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46964396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Character displacement when natural selection pushes in only one direction 当自然选择只向一个方向推进时,特征位移
IF 6.1 1区 环境科学与生态学
Ecological Monographs Pub Date : 2022-07-09 DOI: 10.1002/ecm.1547
Mark A. McPeek, Sarah J. McPeek, Feng Fu
{"title":"Character displacement when natural selection pushes in only one direction","authors":"Mark A. McPeek,&nbsp;Sarah J. McPeek,&nbsp;Feng Fu","doi":"10.1002/ecm.1547","DOIUrl":"10.1002/ecm.1547","url":null,"abstract":"<p>The usual conception of character displacement is of resource competitors differentiating to specialize on different prey in order to reduce competition. However, traits that underlie many predator–prey interactions, such as chase-evade speeds, gape limitation, and toxin concentrations, do not permit such specialization, but instead result in unidirectional evolutionary arms races. Here, we develop and analyze an evolutionary model of predator–prey interactions to explore whether character displacement will still occur when such unidirectional traits define the species interactions, and if so, what environmental conditions foster or retard differentiation. Character displacement in predators and prey does occur, and this differentiation is driven by fitness component trade-offs. Instead of specialization or compartmentalization in which different sets of species have strong interactions, differentiation in this model causes a nested community structure in which species of predators and prey have the same rank interaction strengths with species at the other trophic level. Also, analyses of the model predict that character displacement is fostered in environments with higher productivity, weaker stressors, and lower structural complexity. Model comparisons suggest that character displacement should occur over a broader set of environmental conditions when traits permit prey specialization than when traits foster arms races. These results highlight how different types of phenotypic traits that underlie species interactions shape the species diversification and the structure of the resulting community.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"92 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2022-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42146169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信