整合组学和人工智能驱动的系统生物学:多层网络解码蜜蜂的健康和恢复能力。

IF 3.6 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Huan Zhong, Shuxin Chi, Armando Alcazar Magaña, Osei B Fordwour, Leonard J Foster
{"title":"整合组学和人工智能驱动的系统生物学:多层网络解码蜜蜂的健康和恢复能力。","authors":"Huan Zhong, Shuxin Chi, Armando Alcazar Magaña, Osei B Fordwour, Leonard J Foster","doi":"10.1021/acs.jproteome.5c00294","DOIUrl":null,"url":null,"abstract":"<p><p>Honey bees (<i>Apis mellifera</i>) are vital pollinators essential for maintaining ecosystem stability and global food production, but they face escalating threats from pathogens, agrochemicals, and climate change. Although proteomics has advanced our understanding of bee physiology, single-omics approaches are insufficient to capture the complexity of colony health. This review highlights the rise of integrative multiomics frameworks─combining proteomics, metabolomics, and lipidomics─with artificial intelligence (AI)-based strategies to decode molecular resilience in bees. We summarize recent advances in omics technologies, including spatial and single-cell platforms, mass spectrometry innovations, and customized computational pipelines. Furthermore, we highlight how AI-enhanced multiomics integration facilitates biomarker discovery, elucidates regulatory networks, especially in nonmodel organisms like honey bees. Emerging computational methods such as deep learning, graph neural networks, and multilayer network models offer predictive, scalable, and interpretable insights. Despite challenges like limited sample input and cross-omics heterogeneity, the convergence of omics and machine learning represents a transformative paradigm for decoding complex biological systems. These integrative approaches offer not only a deeper molecular understanding of bee biology but also generalizable frameworks for systems biology in other ecologically relevant species.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative Omics and AI-Driven Systems Biology: Multilayer Networks Decoding <i>Apis mellifera</i> Health and Resilience.\",\"authors\":\"Huan Zhong, Shuxin Chi, Armando Alcazar Magaña, Osei B Fordwour, Leonard J Foster\",\"doi\":\"10.1021/acs.jproteome.5c00294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Honey bees (<i>Apis mellifera</i>) are vital pollinators essential for maintaining ecosystem stability and global food production, but they face escalating threats from pathogens, agrochemicals, and climate change. Although proteomics has advanced our understanding of bee physiology, single-omics approaches are insufficient to capture the complexity of colony health. This review highlights the rise of integrative multiomics frameworks─combining proteomics, metabolomics, and lipidomics─with artificial intelligence (AI)-based strategies to decode molecular resilience in bees. We summarize recent advances in omics technologies, including spatial and single-cell platforms, mass spectrometry innovations, and customized computational pipelines. Furthermore, we highlight how AI-enhanced multiomics integration facilitates biomarker discovery, elucidates regulatory networks, especially in nonmodel organisms like honey bees. Emerging computational methods such as deep learning, graph neural networks, and multilayer network models offer predictive, scalable, and interpretable insights. Despite challenges like limited sample input and cross-omics heterogeneity, the convergence of omics and machine learning represents a transformative paradigm for decoding complex biological systems. These integrative approaches offer not only a deeper molecular understanding of bee biology but also generalizable frameworks for systems biology in other ecologically relevant species.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.5c00294\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.5c00294","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

蜜蜂(Apis mellifera)是维持生态系统稳定和全球粮食生产的重要传粉者,但它们面临着来自病原体、农用化学品和气候变化的日益严重的威胁。虽然蛋白质组学提高了我们对蜜蜂生理学的理解,但单组学方法不足以捕捉蜂群健康的复杂性。这篇综述强调了综合多组学框架的兴起──结合蛋白质组学、代谢组学和脂质组学──以及基于人工智能(AI)的策略来解码蜜蜂的分子弹性。我们总结了组学技术的最新进展,包括空间和单细胞平台、质谱创新和定制计算管道。此外,我们强调了人工智能增强的多组学整合如何促进生物标志物的发现,阐明调控网络,特别是在蜜蜂等非模式生物中。新兴的计算方法,如深度学习、图神经网络和多层网络模型,提供了预测性、可扩展性和可解释性的见解。尽管存在样本输入有限和跨组学异质性等挑战,但组学和机器学习的融合代表了解码复杂生物系统的变革范式。这些综合方法不仅提供了对蜜蜂生物学更深入的分子理解,而且为其他生态相关物种的系统生物学提供了可推广的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrative Omics and AI-Driven Systems Biology: Multilayer Networks Decoding Apis mellifera Health and Resilience.

Honey bees (Apis mellifera) are vital pollinators essential for maintaining ecosystem stability and global food production, but they face escalating threats from pathogens, agrochemicals, and climate change. Although proteomics has advanced our understanding of bee physiology, single-omics approaches are insufficient to capture the complexity of colony health. This review highlights the rise of integrative multiomics frameworks─combining proteomics, metabolomics, and lipidomics─with artificial intelligence (AI)-based strategies to decode molecular resilience in bees. We summarize recent advances in omics technologies, including spatial and single-cell platforms, mass spectrometry innovations, and customized computational pipelines. Furthermore, we highlight how AI-enhanced multiomics integration facilitates biomarker discovery, elucidates regulatory networks, especially in nonmodel organisms like honey bees. Emerging computational methods such as deep learning, graph neural networks, and multilayer network models offer predictive, scalable, and interpretable insights. Despite challenges like limited sample input and cross-omics heterogeneity, the convergence of omics and machine learning represents a transformative paradigm for decoding complex biological systems. These integrative approaches offer not only a deeper molecular understanding of bee biology but also generalizable frameworks for systems biology in other ecologically relevant species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信