{"title":"Optimizing Cancer Classification and Gene Discovery with an Adaptive Learning Search Algorithm for Microarray Analysis","authors":"Chiwen Qu, Heng Yao, Tingjiang Pan, Zenghui Lu","doi":"10.1007/s42235-025-00656-1","DOIUrl":"10.1007/s42235-025-00656-1","url":null,"abstract":"<div><p>DNA microarrays, a cornerstone in biomedicine, measure gene expression across thousands to tens of thousands of genes. Identifying the genes vital for accurate cancer classification is a key challenge. Here, we present Fs-LSA (F-score based Learning Search Algorithm), a novel gene selection algorithm designed to enhance the precision and efficiency of target gene identification from microarray data for cancer classification. This algorithm is divided into two phases: the first leverages F-score values to prioritize and select feature genes with the most significant differential expression; the second phase introduces our Learning Search Algorithm (LSA), which harnesses swarm intelligence to identify the optimal subset among the remaining genes. Inspired by human social learning, LSA integrates historical data and collective intelligence for a thorough search, with a dynamic control mechanism that balances exploration and refinement, thereby enhancing the gene selection process. We conducted a rigorous validation of Fs-LSA’s performance using eight publicly available cancer microarray expression datasets. Fs-LSA achieved accuracy, precision, sensitivity, and F1-score values of 0.9932, 0.9923, 0.9962, and 0.994, respectively. Comparative analyses with state-of-the-art algorithms revealed Fs-LSA’s superior performance in terms of simplicity and efficiency. Additionally, we validated the algorithm’s efficacy independently using glioblastoma data from GEO and TCGA databases. It was significantly superior to those of the comparison algorithms. Importantly, the driver genes identified by Fs-LSA were instrumental in developing a predictive model as an independent prognostic indicator for glioblastoma, underscoring Fs-LSA’s transformative potential in genomics and personalized medicine.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 2","pages":"901 - 930"},"PeriodicalIF":4.9,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on Mirror-Assisted Rehabilitation Training Method Based on Dual-Arm Robots","authors":"Xiaolong Yang, Qing Sun, Shuai Guo","doi":"10.1007/s42235-025-00665-0","DOIUrl":"10.1007/s42235-025-00665-0","url":null,"abstract":"<div><p>This paper studies a mirror-assisted rehabilitation training method based on a dual-arm robot, which aims to provide an effective rehabilitation training program for patients with upper limb dysfunction due to stroke or other causes. During the mirror training task scenario, the subjects are visually guided to perform the mirror movement of both arms, and the dual-arm robot is used to facilitate the mirror-assisted rehabilitation from the healthy side to the affected side. Adaptive impedance control and force field channel design ensure the stability and safety of the rehabilitation process. In the rehabilitation training, appropriate assistance forces are provided within the channel to correct trajectory deviations, ensuring that the subjects’ movement path aligns with the predetermined trajectory. Outside the channel, the superposition of stiffness and correction force fields prevents the subjects from deviating from the predetermined trajectory, thus avoiding injuries. In addition, the adaptive impedance control is capable of dynamically adjusting the impedance parameters according to the real-time state of the subjects, providing a personalized rehabilitation training program. This method significantly enhances both the safety and effectiveness of the rehabilitation training. The experimental results showed that the subjects’ motion flexibility and safety were significantly improved during the mirror-assisted rehabilitation training. This study offers a new approach for the future development of rehabilitation robotics with broad application potential.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 2","pages":"670 - 683"},"PeriodicalIF":4.9,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Improved Multi-objective Artificial Hummingbird Algorithm for Capacity Allocation of Supercapacitor Energy Storage Systems in Urban Rail Transit","authors":"Xin Wang, Jian Feng, Yuxin Qin","doi":"10.1007/s42235-025-00653-4","DOIUrl":"10.1007/s42235-025-00653-4","url":null,"abstract":"<div><p>To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved MOAHA (IMOAHA) was proposed. The improvements involve Tent mapping based on random variables to initialize the population, a logarithmic decrease strategy for inertia weight to balance search capability, and the improved search operators in the territory foraging phase to enhance the ability to escape from local optima and increase convergence accuracy. The effectiveness of IMOAHA was verified through Matlab/Simulink. The results demonstrate that IMOAHA exhibits superior convergence, diversity, uniformity, and coverage of solutions across 6 test functions, outperforming 4 comparative algorithms. A Wilcoxon rank-sum test further confirmed its exceptional performance. To assess IMOAHA’s ability to solve engineering problems, an optimization model for a multi-track, multi-train urban rail traction power supply system with Supercapacitor Energy Storage Systems (SCESSs) was established, and IMOAHA was successfully applied to solving the capacity allocation problem of SCESSs, demonstrating that it is an effective tool for solving complex Multi-Objective Optimization Problems (MOOPs) in engineering domains.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 2","pages":"866 - 883"},"PeriodicalIF":4.9,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiachun Zhang, Tingwei Huo, Yuanming Ji, Haozhen Zhan, Shixun Fu, Jianming Wu, Xipeng Wang, Keju Ji
{"title":"Biomimetic Manipulation of Smooth Solid Surfaces for Vacuum High-Temperature and Vibration Environments","authors":"Jiachun Zhang, Tingwei Huo, Yuanming Ji, Haozhen Zhan, Shixun Fu, Jianming Wu, Xipeng Wang, Keju Ji","doi":"10.1007/s42235-024-00645-w","DOIUrl":"10.1007/s42235-024-00645-w","url":null,"abstract":"<div><p>In the fields of optoelectronics and semiconductors, reliable fixation and handling of brittle materials (glass, wafer, etc.) in high-temperature, vacuum, and vibration environments face particular technical challenges. These challenges include the inability of suction cups in a vacuum, the residue of chemical adhesives, and the easy damage of mechanical clamping. In this paper, fluorine-based bionic adhesive pads (FBAPs) obtained using molding technology to imitate gecko micropillar arrays are presented. FBAPs inhibit the substantial decay of adhesive properties at high temperatures and provide stable and reliable performance in vacuum and vibration environments. The results demonstrated that the decayed force values of the normal and tangential strength of the FBAP were only 9.01% and 5.82% of the planar samples when warmed up to 300 °C from 25 °C, respectively. In a vacuum, all FBAPs exhibit less than 20% adhesion attenuation, and in a vibrational environment, they can withstand accelerations of at least 4.27 g. The design of the microstructure arrays enables the realization of efficient and non-destructive separation through mechanical rotation or blowing. It provides a bionic material basis for the fixation of brittle materials on smooth surfaces under complex environments and for transportation automation.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 2","pages":"755 - 766"},"PeriodicalIF":4.9,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Xiong, Haojie Liu, Bingxing Chen, Yanjie Chen, Ligang Yao, Zongxing Lu
{"title":"Whole-Body Hybrid Torque-Position Control for Balancing with a New Wheeled Bipedal Robot","authors":"Yi Xiong, Haojie Liu, Bingxing Chen, Yanjie Chen, Ligang Yao, Zongxing Lu","doi":"10.1007/s42235-025-00657-0","DOIUrl":"10.1007/s42235-025-00657-0","url":null,"abstract":"<div><p>The wheeled bipedal robots have great application potential in environments with a mixture of structured and unstructured terrain. However, wheeled bipedal robots have problems such as poor balance ability and low movement level on rough roads. In this paper, a novel and low-cost wheeled bipedal robot with an asymmetrical five-link mechanism is proposed, and the kinematics of the legs and the dynamics of the Wheeled Inverted Pendulum (WIP) are modeled. The primary balance controller of the wheeled bipedal robot is built based on the Linear Quadratic Regulator (LQR) and the compensation method of the virtual pitch angle adjusting the Center of Mass (CoM) position, then the whole-body hybrid torque-position control is established by combining attitude and leg controllers. The stability of the robot’s attitude control and motion is verified with simulations and prototype experiments, which confirm the robot’s ability to pass through complex terrain and resist external interference. The feasibility and reliability of the proposed control model are verified.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 2","pages":"626 - 641"},"PeriodicalIF":4.9,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antibacterial Properties of Carbon Fiber/Polyether Ether Ketone Artificial Bone Composites Modified by Black Phosphorus Coating Assisted by Wet Chemical Nitration Surface Treatment","authors":"Luxiao Sang, Hao Li, Runze Shi, Wen Qin, Tong Xing, Shengnan Qin, Aoqun Jian","doi":"10.1007/s42235-025-00662-3","DOIUrl":"10.1007/s42235-025-00662-3","url":null,"abstract":"<div><p>The poor surface antibacterial properties are one of the important factors limiting the application of Carbon Fibers Reinforced Polyetheretherketone (CFR-P) composites as artificial bone replace materials. Some of the Two-Dimensional (2D) nanomaterials with unique lamellar structures and biological properties have been demonstrated to have excellent antibacterial properties. Antibacterial properties can be improved by feasible chemical strategies for preparing 2D nanomaterials coating on the surface of CFR-P. In this work, Black Phosphorus (BP) coating was prepared on the originally chemically inert CFR-P surface based on wet chemical pretreatment. The physical and chemical properties, including surface microstructure, chemical composition and state, roughness and hydrophilicity were characterized. The antibacterial ratios against <i>Staphylococcus aureus</i> (<i>S. aureus</i>), <i>Escherichia coli</i> (<i>E. coli</i>), and <i>Streptococcus mutans</i> (<i>S. mutans</i>) were evaluated. The results indicated that hydrophilicity of BP coating on CFR-P was significantly higher compared to that of the pure CFR-P. Wet chemical pretreatment using mixed acid reagents (concentrated sulfuric acid and concentrated nitric acid) introduced hydroxyl, carboxyl and nitro groups on CFR-P. The BP coating exhibited the antibacterial rate of over 98% against both <i>S. aureus</i> and <i>E. coli</i>. In addition, the antibacterial rate of BP coating against the main pathogenic bacteria of dental caries, <i>Streptococcus mutans</i>, reached 45%.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 2","pages":"838 - 850"},"PeriodicalIF":4.9,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dolphin-Inspired Skin Microvibrations Offer a Novel Pressure-Dominated Drag Reduction Mechanism","authors":"Dongyue Wang, Hao Liu","doi":"10.1007/s42235-024-00638-9","DOIUrl":"10.1007/s42235-024-00638-9","url":null,"abstract":"<div><p>The cutaneous ridges on dolphin skin have long been believed to effectively reduce friction drag, thereby contributing to overall drag reduction. However, since these skin ridges are oriented perpendicular to the swimming direction, they also generate additional pressure drag, raising questions about the impact of the shape-induced pressure forces on swimming. Inspired by the microvibrations observed on dolphin skin, we hypothesize that the microstructure on dolphin skin is not static but dynamically oscillates in the form of Longitudinal Micro-Ultrasonic Waves (LMUWs). To explore this, we carried out a series of Computational Fluid Dynamics (CFD) simulations based on Large Eddy Simulation (LES) model to investigate the impact of pressure drag on the total drag acting on an oscillating skin surface under realistic turbulent flow conditions. The results indicate that the dynamic skin oscillations induce a new dynamic Stokes boundary layer, which has the potential to convert pressure drag into a negative force, thereby reducing total drag under the influence of traveling LMUW excitations. Furthermore, a relative velocity <i>ξ</i>, defined as the difference between the wave speed <i>c</i> and the external flow speed <i>U</i>, is introduced to evaluate the drag-reduction effect dominated by pressure. The findings reveal that pressure drag remains negative when <i>ξ</i> > 0. As <i>ξ</i> increases, the thrust effect induced by negative pressure becomes increasingly significant, ultimately counteracting friction drag and eliminating total drag. This pressure-dominated drag reduction mechanism thus demonstrates a novel strategy for the drag reduction technology and the potential of unveiling the mysteries behind dolphin swimming.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 2","pages":"793 - 804"},"PeriodicalIF":4.9,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42235-024-00638-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luis Santamaría, Laura Suarez Fernandez, Manuel Garcia-Diaz, José González Pérez, Mónica Galdo
{"title":"Bioinspired Trailing Edge Serrations for Vertical Axis Wind Turbine Blades in Urban Environments: Performance Effects","authors":"Luis Santamaría, Laura Suarez Fernandez, Manuel Garcia-Diaz, José González Pérez, Mónica Galdo","doi":"10.1007/s42235-025-00660-5","DOIUrl":"10.1007/s42235-025-00660-5","url":null,"abstract":"<div><p>Biomimetics has recently emerged as an interesting approach to enhance renewable energy technologies. In this work, bioinspired Trailing Edge Serrations (TES) were evaluated on a typical Vertical Axis Wind Turbine (VAWT) airfoil, the DU06-W200. As noise reduction benefits of these mechanisms are already well-established, this study focuses on their impact on airfoil and VAWT performance. A saw-tooth geometry was chosen based on VAWT specifications and existing research, followed by a detailed assessment through wind tunnel tests using a newly developed aerodynamic balance. For a broad spectrum of attack angles and Reynolds numbers, lift, drag, and pitching moments were carefully measured. The results show that TES enhance the lift-to-drag ratio, especially in stalled conditions, and postpone stall at negative angles, expanding the effective performance range. A notable increase in pitching moment also is also observed, relevant for blade-strut joint design. Additionally, the impact on turbine performance was estimated using an analytical model, demonstrating excellent accuracy when compared against previous experimental results. TES offer a modest 2% improvement in peak performance, though they slightly narrow the optimal tip-speed ratio zone. Despite this, the potential noise reduction and performance gains make TES a valuable addition to VAWT designs, especially in urban settings.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 2","pages":"822 - 837"},"PeriodicalIF":4.9,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42235-025-00660-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongfei Chu, Xiaolong Hui, Xuejian Bai, Min Tan, Yu Wang
{"title":"Hydrodynamic Characteristic Analysis of a Biomimetic Underwater Vehicle-Manipulator System","authors":"Hongfei Chu, Xiaolong Hui, Xuejian Bai, Min Tan, Yu Wang","doi":"10.1007/s42235-024-00646-9","DOIUrl":"10.1007/s42235-024-00646-9","url":null,"abstract":"<div><p>The propulsion mechanisms of biomimetic underwater vehicles using bionic undulatory fins have been extensively studied for their potential to enhance efficiency and maneuverability in underwater environments. However, the hydrodynamic interactions between the vehicle body, robotic manipulator, and fluctuating motion remain less explored, particularly in turbulent conditions. In this work, a Biomimetic Underwater Vehicle-Manipulator System (BUVMS) propelled using bionic undulatory fins is considered. The propulsion mechanism and hydrodynamic performance of fluctuating motion are analyzed by numerical simulation. The drag coefficients of the BUVMS at different Reynolds numbers are calculated, and the investigation of vortex generation during the motion of the BUVMS reveals that vortex binding and shedding are the key factors for propulsion generation. Various moving modes of the BUVMS are developed in conjunction with the propulsion mechanism. The hydrodynamic loads during the motion of the underwater robotic arm in a turbulent environment are analyzed. A simple motion strategy is proposed to reduce the effect of water drag on the manipulation of the robotic arm and on the overall stability of the BUVMS. The results of the hydrodynamic analysis offer systematic guidance for controlling underwater operations of the BUVMS.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 2","pages":"654 - 669"},"PeriodicalIF":4.9,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gexin Wang, Jianyang Li, Yan Liu, Kunyan Wang, Luquan Ren, Qingping Liu, Lei Ren, Bingqian Li
{"title":"3D Printed Gear-Based Quasi-Zero Stiffness Vibration Isolation Metastructure","authors":"Gexin Wang, Jianyang Li, Yan Liu, Kunyan Wang, Luquan Ren, Qingping Liu, Lei Ren, Bingqian Li","doi":"10.1007/s42235-025-00659-y","DOIUrl":"10.1007/s42235-025-00659-y","url":null,"abstract":"<div><p>Traditional linear vibration isolators struggle to combine high load-bearing capacity with low-frequency vibration isolation, whereas nonlinear metastructure isolators can effectively fulfill both functions. This paper draws inspiration from the Quasi-Zero Stiffness (QZS) characteristics resulting from the buckling deformation of beams, and proposes a gear-based QZS structure by arranging beams in a circular array. We investigated the static mechanical behavior under different structural parameters, loading angles, and gear combinations through experiments and simulations, and demonstrated the mechanical performances could be effectively programmed. Subsequent vibration isolation tests on the double gears prove superior vibration isolation performance at low frequency while maintaining high load-bearing capacities. Additionally, a key contribution of our work is the development of a mathematical model to characterize the buckling behavior of the unit beam within the gear structure, with its accuracy validated through finite element analysis and experimental results. The gear’s modulus, number of teeth, and pressure angle are selected according to standard series, allowing the gear can be seamlessly integrated into existing mechanical systems in critical fields such as aerospace, military, and etc.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 2","pages":"767 - 782"},"PeriodicalIF":4.9,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}