{"title":"Guest Editors’ Introduction: Special Issue on Robust and Resilient Future Communication Networks","authors":"Massimo Tornatore;Teresa Gomes;Carmen Mas-Machuca;Eiji Oki;Chadi Assi;Dominic Schupke","doi":"10.1109/TNSM.2024.3469308","DOIUrl":"https://doi.org/10.1109/TNSM.2024.3469308","url":null,"abstract":"","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 5","pages":"4929-4935"},"PeriodicalIF":4.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10715485","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142408765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LRB: Locally Repairable Blockchain for IoT Integration","authors":"Zihan Jiang, Qi Chen, Zhihong Deng, He Zhang","doi":"10.1109/tnsm.2024.3462813","DOIUrl":"https://doi.org/10.1109/tnsm.2024.3462813","url":null,"abstract":"","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"314 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Popularity-Conscious Service Caching and Offloading in Digital Twin and NOMA-Aided Connected Autonomous Vehicular Systems","authors":"Biswadip Bandyopadhyay;Pratyay Kuila;Mahesh Chandra Govil","doi":"10.1109/TNSM.2024.3462481","DOIUrl":"10.1109/TNSM.2024.3462481","url":null,"abstract":"The proliferation of 5G/B5G communication has led to increased integration between digital twin (DT) technology and connected autonomous vehicular systems (CAVS). The complex and resource-intensive vehicular applications pose significant connectivity and performance challenges for CAVS. To improve connectivity, optimize spectrum allocation, and mitigate network congestion, non-orthogonal multiple access (NOMA) is implemented. Furthermore, offloading and service caching are employed by storing and offloading relevant services at the edge of vehicular networks. However, due to the limited caching storage of vehicular edge servers, the decision to cache popular and emergent services to minimize delay and energy consumption becomes challenging. The decisions regarding computation offloading and service caching are also strongly coupled. In this work, a popularity-conscious service caching and offloading problem (PSCAOP) in a DT and NOMA-aided CAVS (DTCAVS) is studied. PSCAOP is mathematically constructed and observed to be NP-complete. Then a quantum-inspired particle swarm optimization (QPSO) algorithm is proposed for DTCAVS (DTCAVS-QPSO), aiming to minimize delay and energy consumption. DTCAVS-QPSO prioritizes the popular and emergent service caching. The quantum particle (QP) is encoded to provide a comprehensive solution to the PSCAOP. A one-time mapping algorithm is used to decode the QPs. The fitness function is formulated considering delay, energy consumption, and type of service. All the phases of DTCAVS-QPSO are observed to be bounded in polynomial time. The significance of the proposed DTCAVS-QPSO is demonstrated through extensive simulations and hypothesis-based statistical analysis. Experimental outcomes underscore the superiority of the DTCAVS-QPSO over other standard works, indicating an average delay and an energy consumption reduction between 6% and 49%.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6451-6464"},"PeriodicalIF":4.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SECURE: Secure and Efficient Protocol Using Randomness and Edge-Computing for Drone-Assisted Internet of Vehicles","authors":"Himani Sikarwar;Harsha Vasudev;Debasis Das;Mauro Conti;Koustav Kumar Mondal","doi":"10.1109/TNSM.2024.3462746","DOIUrl":"10.1109/TNSM.2024.3462746","url":null,"abstract":"The Internet of Vehicles (IoV) faces significant challenges related to secure authentication, efficient communication, and privacy preservation due to the high mobility of vehicles, the need for real-time data processing, varying quality of communication links, and the diverse range of devices and protocols requiring interoperability. These challenges are further complicated by the large-scale, dynamic, and heterogeneous nature of IoV systems. Traditional approaches using Road Side Connecting Nodes (RSCNs) face challenges like limited range, high costs, and single points of failure. Drone-assisted IoV (DIoV) networks address these issues by using Unmanned Aerial Vehicles (UAVs) as mobile edge nodes, enhancing connectivity, extending coverage, and improving adaptability and resilience. To address these challenges, we propose SECURE, a drone-assisted, Physically Unclonable Function (PUF)-based authentication and privacy-preserving protocol integrated with edge computing. This architecture replaces RSCNs with edge nodes and incorporates UAVs as mobile edge nodes, providing extended coverage, reduced latency, and enhanced adaptability. The PUFs in SECURE generate unique hardware-based cryptographic keys, adding an additional layer of security, while edge computing offloads computational tasks, improves network efficiency, and further reduces latency. The formal security analysis, conducted using the Random Oracle Model (ROM), proves the robustness of the session key against active and passive adversaries. Furthermore, informal security analysis demonstrates that SECURE effectively resists various security attacks, while achieving confidentiality, integrity, and authenticity in DIoV. In SECURE, we have considered two types of devices for experiments: NVIDIA Jetson Xavier NX and Raspberry Pi 4. The performance analysis, considering the results from Jetson Xavier NX, demonstrates that SECURE achieves maximum upto approximately 82.1% less communication cost and 78% faster computation time compared to the state-of-the-art schemes.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6974-6988"},"PeriodicalIF":4.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Edge Computing Management With Collaborative Lazy Pulling for Accelerated Container Startup","authors":"Chiao-Cheng Chen;Yao Chiang;Yu-Chieh Lee;Hung-Yu Wei","doi":"10.1109/TNSM.2024.3462408","DOIUrl":"10.1109/TNSM.2024.3462408","url":null,"abstract":"With the growing demand for latency-sensitive applications in 5G networks, edge computing has emerged as a promising solution. It enables instant response and dynamic resource allocation based on real-time network information by moving resources from the cloud to the network edge. Containers, known for their lightweight nature and ease of deployment, have been recognized as a valuable virtualization technology for service deployment. However, the prolonged startup time of containers can lead to long response time, particularly in edge computing scenarios characterized by long propagation time, frequent deployment, and migration. In this paper, we comprehensively consider image caching, container assignment, and registry selection problem in an edge system. To our best effort, there is no existing work that has taken all the above aspects into account. To address the problem, we propose a novel image caching strategy that employs partial caching, allowing local registries to cache either the least functional or complete version of application images. In addition, a container assignment and registry selection problem is solved by using an edge-based collaborative lazy pulling algorithm. To evaluate the performance of our proposed algorithms, we conduct experiments with real-world app usage data and popular images in a testbed environment. The experimental results demonstrate that our algorithms outperform traditional greedy algorithms in terms of average user response time and cache hit rate.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6437-6450"},"PeriodicalIF":4.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Importance Analysis of Micro-Flow Independent Features for Detecting Distributed Network Attacks","authors":"Samuel Kopmann, Martina Zitterbart","doi":"10.1109/tnsm.2024.3460082","DOIUrl":"https://doi.org/10.1109/tnsm.2024.3460082","url":null,"abstract":"","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"20 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Liu;Paulo Renato da Costa Mendes;Andreas Wirsen;Daniel Görges
{"title":"MPC-Based 5G uRLLC Rate Calculation","authors":"Jun Liu;Paulo Renato da Costa Mendes;Andreas Wirsen;Daniel Görges","doi":"10.1109/TNSM.2024.3459634","DOIUrl":"10.1109/TNSM.2024.3459634","url":null,"abstract":"The development of 5G enables communication systems to satisfy heterogeneous service requirements of novel applications. For instance, ultra-reliable low latency communication (uRLLC) is applicable for many safety-critical and latency-sensitive scenarios. Many research papers aim to convert the stringent reliability and latency factors to a static data rate requirement. However, in most industrial scenarios, the communication traffic presents short-term/long-term dependency, burst, and non-stationary characteristics. This makes it more challenging to obtain a tight upper bound for the rate requirement of uRLLC. In this work, we introduce a novel solution based on decentralized model predictive control (MPC), where the dynamic incoming communication traffic and the users’ quality of service (QoS) requirements are reformulated into an up-to-date data rate constraint. Under such assumptions, we consider a use case of the resource allocation problem for a single uRLLC network slice. The allocation task is solved by the successive convex approximation (SCA) algorithm for a more in-depth analysis. The simulation results show that the proposed algorithm can deal with non-stationary communication traffic in real-time, as well as provide good performance with guaranteed delay and reliability requirements.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6770-6795"},"PeriodicalIF":4.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10679265","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md Ibrahim Ibne Alam, Anindo Mahmood, Prasun K. Dey, Murat Yuksel, Koushik Kar
{"title":"Meta-Peering: Automating ISP Peering Decision Process","authors":"Md Ibrahim Ibne Alam, Anindo Mahmood, Prasun K. Dey, Murat Yuksel, Koushik Kar","doi":"10.1109/tnsm.2024.3459796","DOIUrl":"https://doi.org/10.1109/tnsm.2024.3459796","url":null,"abstract":"","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"11 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agrippina Mwangi, Nadine Kabbara, Patrick Coudray, Mikkel Gryning, Madeleine Gibescu
{"title":"Investigating the Dependability of Software-Defined IIoT-Edge Networks for Next-Generation Offshore Wind Farms","authors":"Agrippina Mwangi, Nadine Kabbara, Patrick Coudray, Mikkel Gryning, Madeleine Gibescu","doi":"10.1109/tnsm.2024.3458447","DOIUrl":"https://doi.org/10.1109/tnsm.2024.3458447","url":null,"abstract":"","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"8 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}