{"title":"基于drl的具有优先级和资源感知的时变工作负载调度","authors":"Qifeng Liu;Qilin Fan;Xu Zhang;Xiuhua Li;Kai Wang;Qingyu Xiong","doi":"10.1109/TNSM.2025.3559610","DOIUrl":null,"url":null,"abstract":"With the proliferation of cloud services and the continuous growth in enterprises’ demand for dynamic multi-dimensional resources, the implementation of effective strategy for time-varying workload scheduling has become increasingly significant. In this paper, we propose a deep reinforcement learning (DRL)-based method for time-varying workload scheduling, aiming to allocate resources efficiently across servers in the cluster. Specifically, we integrate a classifier and queue scorer to construct a priority queue that exploits temporal resource utilization patterns across different workload classes. Then, we design parallel graph attention layers to capture the dimensional features and temporal dynamics of cloud server cluster. Moreover, we propose a DRL algorithm to generate scheduling strategies that can adapt to dynamic environments. Validation on real-world traces from Google cluster demonstrates that our method outperforms existing approaches in key metrics of cloud server cluster management.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 3","pages":"2838-2852"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DRL-Based Time-Varying Workload Scheduling With Priority and Resource Awareness\",\"authors\":\"Qifeng Liu;Qilin Fan;Xu Zhang;Xiuhua Li;Kai Wang;Qingyu Xiong\",\"doi\":\"10.1109/TNSM.2025.3559610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the proliferation of cloud services and the continuous growth in enterprises’ demand for dynamic multi-dimensional resources, the implementation of effective strategy for time-varying workload scheduling has become increasingly significant. In this paper, we propose a deep reinforcement learning (DRL)-based method for time-varying workload scheduling, aiming to allocate resources efficiently across servers in the cluster. Specifically, we integrate a classifier and queue scorer to construct a priority queue that exploits temporal resource utilization patterns across different workload classes. Then, we design parallel graph attention layers to capture the dimensional features and temporal dynamics of cloud server cluster. Moreover, we propose a DRL algorithm to generate scheduling strategies that can adapt to dynamic environments. Validation on real-world traces from Google cluster demonstrates that our method outperforms existing approaches in key metrics of cloud server cluster management.\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"22 3\",\"pages\":\"2838-2852\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10962261/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10962261/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
DRL-Based Time-Varying Workload Scheduling With Priority and Resource Awareness
With the proliferation of cloud services and the continuous growth in enterprises’ demand for dynamic multi-dimensional resources, the implementation of effective strategy for time-varying workload scheduling has become increasingly significant. In this paper, we propose a deep reinforcement learning (DRL)-based method for time-varying workload scheduling, aiming to allocate resources efficiently across servers in the cluster. Specifically, we integrate a classifier and queue scorer to construct a priority queue that exploits temporal resource utilization patterns across different workload classes. Then, we design parallel graph attention layers to capture the dimensional features and temporal dynamics of cloud server cluster. Moreover, we propose a DRL algorithm to generate scheduling strategies that can adapt to dynamic environments. Validation on real-world traces from Google cluster demonstrates that our method outperforms existing approaches in key metrics of cloud server cluster management.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.