{"title":"Bandwidth Efficient Cache Selection and Cache-Content Advertisement","authors":"Itamar Cohen","doi":"10.1109/TNSM.2025.3558835","DOIUrl":null,"url":null,"abstract":"Caching is extensively used in various networking environments to optimize performance by reducing latency, bandwidth, and energy consumption. To optimize performance, caches often advertise their content using indicators, which are data structures that trade space efficiency for accuracy. However, this tradeoff introduces the risk of false indications. Existing solutions for cache content advertisement and cache selection often lead to inefficiencies, failing to adapt to dynamic network conditions. This paper introduces SALSA2, a Scalable Adaptive and Learning-based Selection and Advertisement Algorithm, which addresses these limitations through a dynamic and adaptive approach. SALSA2 accurately estimates mis-indication probabilities by considering inter-cache dependencies and dynamically adjusts the size and frequency of indicator advertisements to minimize transmission overhead while maintaining high accuracy. Our extensive simulation study, conducted using a variety of real-world cache traces, demonstrates that SALSA2 achieves up to 84% bandwidth savings compared to the state-of-the-art solution and close-to-optimal service cost in most scenarios. These results highlight SALSA2’s effectiveness in enhancing cache management, making it a robust and versatile solution for modern networking challenges.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 3","pages":"2795-2806"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10955743/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Caching is extensively used in various networking environments to optimize performance by reducing latency, bandwidth, and energy consumption. To optimize performance, caches often advertise their content using indicators, which are data structures that trade space efficiency for accuracy. However, this tradeoff introduces the risk of false indications. Existing solutions for cache content advertisement and cache selection often lead to inefficiencies, failing to adapt to dynamic network conditions. This paper introduces SALSA2, a Scalable Adaptive and Learning-based Selection and Advertisement Algorithm, which addresses these limitations through a dynamic and adaptive approach. SALSA2 accurately estimates mis-indication probabilities by considering inter-cache dependencies and dynamically adjusts the size and frequency of indicator advertisements to minimize transmission overhead while maintaining high accuracy. Our extensive simulation study, conducted using a variety of real-world cache traces, demonstrates that SALSA2 achieves up to 84% bandwidth savings compared to the state-of-the-art solution and close-to-optimal service cost in most scenarios. These results highlight SALSA2’s effectiveness in enhancing cache management, making it a robust and versatile solution for modern networking challenges.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.