{"title":"Joint Power Allocation and Task Scheduling for Data Offloading in Non-Geostationary Orbit Satellite Networks","authors":"Lijun He;Ziye Jia;Juncheng Wang;Erick Lansard;Zhu Han;Chau Yuen","doi":"10.1109/TNSM.2025.3561266","DOIUrl":null,"url":null,"abstract":"In Non-Geostationary Orbit Satellite Networks (NGOSNs) with a large number of battery-carrying satellites, proper power allocation and task scheduling are crucial to improving data offloading efficiency. In this work, we jointly optimize power allocation and task scheduling to achieve energy-efficient data offloading in NGOSNs. Our goal is to properly balance the minimization of the total energy consumption and the maximization of the sum weights of tasks. Due to the tight coupling between power allocation and task scheduling, we first derive the optimal power allocation solution to the joint optimization problem with any given task scheduling policy. We then leverage the conflict graph model to transform the joint optimization problem into an Integer Linear Programming (ILP) problem with any given power allocation strategy. We explore the unique structure of the ILP problem to derive an efficient semidefinite relaxation-based solution. Finally, we utilize the genetic framework to combine the above special solutions as a two-layer solution for the original joint optimization problem. Simulation results demonstrate that our proposed solution can properly balance the reduction of total energy consumption and the improvement of the sum weights of tasks, thus achieving superior system performance over the current literature.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 3","pages":"2882-2896"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10966450/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In Non-Geostationary Orbit Satellite Networks (NGOSNs) with a large number of battery-carrying satellites, proper power allocation and task scheduling are crucial to improving data offloading efficiency. In this work, we jointly optimize power allocation and task scheduling to achieve energy-efficient data offloading in NGOSNs. Our goal is to properly balance the minimization of the total energy consumption and the maximization of the sum weights of tasks. Due to the tight coupling between power allocation and task scheduling, we first derive the optimal power allocation solution to the joint optimization problem with any given task scheduling policy. We then leverage the conflict graph model to transform the joint optimization problem into an Integer Linear Programming (ILP) problem with any given power allocation strategy. We explore the unique structure of the ILP problem to derive an efficient semidefinite relaxation-based solution. Finally, we utilize the genetic framework to combine the above special solutions as a two-layer solution for the original joint optimization problem. Simulation results demonstrate that our proposed solution can properly balance the reduction of total energy consumption and the improvement of the sum weights of tasks, thus achieving superior system performance over the current literature.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.