{"title":"通过 E G N $EG_N$ 共切束的等变拉格朗日浮子同源性","authors":"Guillem Cazassus","doi":"10.1112/topo.12328","DOIUrl":null,"url":null,"abstract":"<p>We provide a construction of equivariant Lagrangian Floer homology <math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <msub>\n <mi>F</mi>\n <mi>G</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$HF_G(L_0, L_1)$</annotation>\n </semantics></math>, for a compact Lie group <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> acting on a symplectic manifold <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> in a Hamiltonian fashion, and a pair of <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-Lagrangian submanifolds <math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n <mo>⊂</mo>\n <mi>M</mi>\n </mrow>\n <annotation>$L_0, L_1 \\subset M$</annotation>\n </semantics></math>. We do so by using symplectic homotopy quotients involving cotangent bundles of an approximation of <math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>G</mi>\n </mrow>\n <annotation>$EG$</annotation>\n </semantics></math>. Our construction relies on Wehrheim and Woodward's theory of quilts, and the telescope construction. We show that these groups are independent of the auxiliary choices involved in their construction, and are <math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mo>∗</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^*(BG)$</annotation>\n </semantics></math>-bimodules. In the case when <math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mo>=</mo>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation>$L_0 = L_1$</annotation>\n </semantics></math>, we show that their chain complex <math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msub>\n <mi>F</mi>\n <mi>G</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$CF_G(L_0, L_1)$</annotation>\n </semantics></math> is homotopy equivalent to the equivariant Morse complex of <math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <annotation>$L_0$</annotation>\n </semantics></math>. Furthermore, if zero is a regular value of the moment map <math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math> and if <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> acts freely on <math>\n <semantics>\n <mrow>\n <msup>\n <mi>μ</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mu ^{-1}(0)$</annotation>\n </semantics></math>, we construct two ‘Kirwan morphisms’ from <math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msub>\n <mi>F</mi>\n <mi>G</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$CF_G(L_0, L_1)$</annotation>\n </semantics></math> to <math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>F</mi>\n <mo>(</mo>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mo>/</mo>\n <mi>G</mi>\n <mo>,</mo>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n <mo>/</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$CF(L_0/G, L_1/G)$</annotation>\n </semantics></math> (respectively, from <math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>F</mi>\n <mo>(</mo>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mo>/</mo>\n <mi>G</mi>\n <mo>,</mo>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n <mo>/</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$CF(L_0/G, L_1/G)$</annotation>\n </semantics></math> to <math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msub>\n <mi>F</mi>\n <mi>G</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>L</mi>\n <mn>0</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>L</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$CF_G(L_0, L_1)$</annotation>\n </semantics></math>). Our construction applies to the exact and monotone settings, as well as in the setting of the extended moduli space of flat <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mi>U</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$SU(2)$</annotation>\n </semantics></math>-connections of a Riemann surface, considered in Manolescu and Woodward's work. Applied to the latter setting, our construction provides an equivariant symplectic side for the Atiyah–Floer conjecture.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12328","citationCount":"0","resultStr":"{\"title\":\"Equivariant Lagrangian Floer homology via cotangent bundles of \\n \\n \\n E\\n \\n G\\n N\\n \\n \\n $EG_N$\",\"authors\":\"Guillem Cazassus\",\"doi\":\"10.1112/topo.12328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide a construction of equivariant Lagrangian Floer homology <math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <msub>\\n <mi>F</mi>\\n <mi>G</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>L</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$HF_G(L_0, L_1)$</annotation>\\n </semantics></math>, for a compact Lie group <math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> acting on a symplectic manifold <math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> in a Hamiltonian fashion, and a pair of <math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>-Lagrangian submanifolds <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>⊂</mo>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$L_0, L_1 \\\\subset M$</annotation>\\n </semantics></math>. We do so by using symplectic homotopy quotients involving cotangent bundles of an approximation of <math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mi>G</mi>\\n </mrow>\\n <annotation>$EG$</annotation>\\n </semantics></math>. Our construction relies on Wehrheim and Woodward's theory of quilts, and the telescope construction. We show that these groups are independent of the auxiliary choices involved in their construction, and are <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mo>∗</mo>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>B</mi>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H^*(BG)$</annotation>\\n </semantics></math>-bimodules. In the case when <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>L</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation>$L_0 = L_1$</annotation>\\n </semantics></math>, we show that their chain complex <math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msub>\\n <mi>F</mi>\\n <mi>G</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>L</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$CF_G(L_0, L_1)$</annotation>\\n </semantics></math> is homotopy equivalent to the equivariant Morse complex of <math>\\n <semantics>\\n <msub>\\n <mi>L</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$L_0$</annotation>\\n </semantics></math>. Furthermore, if zero is a regular value of the moment map <math>\\n <semantics>\\n <mi>μ</mi>\\n <annotation>$\\\\mu$</annotation>\\n </semantics></math> and if <math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> acts freely on <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>μ</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mu ^{-1}(0)$</annotation>\\n </semantics></math>, we construct two ‘Kirwan morphisms’ from <math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msub>\\n <mi>F</mi>\\n <mi>G</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>L</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$CF_G(L_0, L_1)$</annotation>\\n </semantics></math> to <math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mi>F</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>L</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>/</mo>\\n <mi>G</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>/</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$CF(L_0/G, L_1/G)$</annotation>\\n </semantics></math> (respectively, from <math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mi>F</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>L</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>/</mo>\\n <mi>G</mi>\\n <mo>,</mo>\\n <msub>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>/</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$CF(L_0/G, L_1/G)$</annotation>\\n </semantics></math> to <math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msub>\\n <mi>F</mi>\\n <mi>G</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>L</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$CF_G(L_0, L_1)$</annotation>\\n </semantics></math>). Our construction applies to the exact and monotone settings, as well as in the setting of the extended moduli space of flat <math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mi>U</mi>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$SU(2)$</annotation>\\n </semantics></math>-connections of a Riemann surface, considered in Manolescu and Woodward's work. Applied to the latter setting, our construction provides an equivariant symplectic side for the Atiyah–Floer conjecture.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12328\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
对于以哈密尔顿方式作用于交直流形 M $M$ 的紧凑李群 G $G$ 以及一对 G $G$ - 拉格朗日子曲面 L 0 , L 1 ⊂ M $L_0, L_1 \子集 M$ ,我们提供了等变拉格朗日浮子同调 H F G ( L 0 , L 1 ) $HF_G(L_0, L_1)$ 的构造。我们通过使用涉及 E G $EG$ 近似的余切束的交映同调商来做到这一点。我们的构造依赖于韦尔海姆和伍德沃德的棉被理论以及望远镜构造。我们证明这些群与构造中的辅助选择无关,并且是 H ∗ ( B G ) $H^*(BG)$ 双模子。在 L 0 = L 1 $L_0 = L_1$ 的情况下,我们证明它们的链复数 C F G ( L 0 , L 1 ) $CF_G(L_0, L_1)$ 与 L 0 $L_0$ 的等变莫尔斯复数是同调等价的。
Equivariant Lagrangian Floer homology via cotangent bundles of
E
G
N
$EG_N$
We provide a construction of equivariant Lagrangian Floer homology , for a compact Lie group acting on a symplectic manifold in a Hamiltonian fashion, and a pair of -Lagrangian submanifolds . We do so by using symplectic homotopy quotients involving cotangent bundles of an approximation of . Our construction relies on Wehrheim and Woodward's theory of quilts, and the telescope construction. We show that these groups are independent of the auxiliary choices involved in their construction, and are -bimodules. In the case when , we show that their chain complex is homotopy equivalent to the equivariant Morse complex of . Furthermore, if zero is a regular value of the moment map and if acts freely on , we construct two ‘Kirwan morphisms’ from to (respectively, from to ). Our construction applies to the exact and monotone settings, as well as in the setting of the extended moduli space of flat -connections of a Riemann surface, considered in Manolescu and Woodward's work. Applied to the latter setting, our construction provides an equivariant symplectic side for the Atiyah–Floer conjecture.