{"title":"An \u0000 \u0000 \u0000 L\u0000 ∞\u0000 \u0000 $L_infty$\u0000 structure for Legendrian contact homology","authors":"Lenhard Ng","doi":"10.1112/topo.70034","DOIUrl":"https://doi.org/10.1112/topo.70034","url":null,"abstract":"<p>For any Legendrian knot or link in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 <annotation>$mathbb {R}^3$</annotation>\u0000 </semantics></math>, we construct an <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mi>∞</mi>\u0000 </msub>\u0000 <annotation>$L_infty$</annotation>\u0000 </semantics></math> algebra that can be viewed as an extension of the Chekanov–Eliashberg differential graded algebra. The <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mi>∞</mi>\u0000 </msub>\u0000 <annotation>$L_infty$</annotation>\u0000 </semantics></math> structure incorporates information from rational symplectic field theory and can be formulated combinatorially. One consequence is the construction of a Poisson bracket on commutative Legendrian contact homology, and we show that the resulting Poisson algebra is an invariant of Legendrian links under isotopy.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 3","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144740506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}