Journal of Topology最新文献

筛选
英文 中文
An L ∞ $L_infty$ structure for Legendrian contact homology Legendrian接触同调的L∞$L_infty$结构
IF 1.1 2区 数学
Journal of Topology Pub Date : 2025-07-31 DOI: 10.1112/topo.70034
Lenhard Ng
{"title":"An \u0000 \u0000 \u0000 L\u0000 ∞\u0000 \u0000 $L_infty$\u0000 structure for Legendrian contact homology","authors":"Lenhard Ng","doi":"10.1112/topo.70034","DOIUrl":"https://doi.org/10.1112/topo.70034","url":null,"abstract":"<p>For any Legendrian knot or link in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 <annotation>$mathbb {R}^3$</annotation>\u0000 </semantics></math>, we construct an <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mi>∞</mi>\u0000 </msub>\u0000 <annotation>$L_infty$</annotation>\u0000 </semantics></math> algebra that can be viewed as an extension of the Chekanov–Eliashberg differential graded algebra. The <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mi>∞</mi>\u0000 </msub>\u0000 <annotation>$L_infty$</annotation>\u0000 </semantics></math> structure incorporates information from rational symplectic field theory and can be formulated combinatorially. One consequence is the construction of a Poisson bracket on commutative Legendrian contact homology, and we show that the resulting Poisson algebra is an invariant of Legendrian links under isotopy.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 3","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144740506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Counting double cosets with application to generic 3-manifolds 双陪集计数及其在泛型3流形上的应用
IF 0.8 2区 数学
Journal of Topology Pub Date : 2025-07-22 DOI: 10.1112/topo.70029
Suzhen Han, Wenyuan Yang, Yanqing Zou
{"title":"Counting double cosets with application to generic 3-manifolds","authors":"Suzhen Han,&nbsp;Wenyuan Yang,&nbsp;Yanqing Zou","doi":"10.1112/topo.70029","DOIUrl":"https://doi.org/10.1112/topo.70029","url":null,"abstract":"<p>We study the growth of double cosets in the class of groups with contracting elements, including relatively hyperbolic groups, CAT(0) groups and mapping class groups among others. Generalizing a recent work of Gitik and Rips about hyperbolic groups, we prove that the double coset growth of two Morse subgroups of infinite index is comparable with the orbital growth function. The same result is further obtained for a more general class of subgroups whose limit sets are proper subsets in the entire limit set of the ambient group. The limit sets under consideration are defined in a general convergence compactification, including Gromov boundary, Bowditch boundary, Thurston boundary and horofunction boundary. As an application, we confirm a conjecture of Maher that hyperbolic 3-manifolds are exponentially generic in the set of 3-manifolds built from Heegaard splitting using complexity in Teichmüller metric.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144672881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Dehn twist action for quantum representations of mapping class groups 映射类群的量子表示的Dehn扭转作用
IF 0.8 2区 数学
Journal of Topology Pub Date : 2025-07-08 DOI: 10.1112/topo.70027
Lukas Müller, Lukas Woike
{"title":"The Dehn twist action for quantum representations of mapping class groups","authors":"Lukas Müller,&nbsp;Lukas Woike","doi":"10.1112/topo.70027","DOIUrl":"https://doi.org/10.1112/topo.70027","url":null,"abstract":"<p>We calculate the Dehn twist action on the spaces of conformal blocks of a not necessarily semisimple modular category. In particular, we give the order of the Dehn twists under the mapping class group representations of closed surfaces. For Dehn twists about non-separating simple closed curves, we prove that this order is the order of the ribbon twist, thereby generalizing a result that De Renzi–Gainutdinov–Geer–Patureau–Mirand–Runkel obtained for the small quantum group. In the separating case, we express the order using the order of the ribbon twist on monoidal powers of the canonical end. As an application, we prove that the Johnson kernels of the mapping class groups act trivially if and only if for the canonical end the ribbon twist and double braiding with itself are trivial. We give a similar result for the visibility of the Torelli groups.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144581962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Torsion elements in the associated graded of the Y $Y$ -filtration of the monoid of homology cylinders 同调圆柱体单线的Y$ Y$滤过的相关梯度中的扭转元
IF 0.8 2区 数学
Journal of Topology Pub Date : 2025-06-30 DOI: 10.1112/topo.70028
Yuta Nozaki, Masatoshi Sato, Masaaki Suzuki
{"title":"Torsion elements in the associated graded of the \u0000 \u0000 Y\u0000 $Y$\u0000 -filtration of the monoid of homology cylinders","authors":"Yuta Nozaki,&nbsp;Masatoshi Sato,&nbsp;Masaaki Suzuki","doi":"10.1112/topo.70028","DOIUrl":"https://doi.org/10.1112/topo.70028","url":null,"abstract":"<p>Clasper surgery induces the <span></span><math>\u0000 <semantics>\u0000 <mi>Y</mi>\u0000 <annotation>$Y$</annotation>\u0000 </semantics></math>-filtration <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <msub>\u0000 <mi>Y</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <mi>IC</mi>\u0000 <mo>}</mo>\u0000 </mrow>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>$lbrace Y_nmathcal {IC}rbrace _n$</annotation>\u0000 </semantics></math> over the monoid of homology cylinders, which serves as a 3-dimensional analogue of the lower central series of the Torelli group of a surface. In this paper, we investigate the torsion submodules of the associated graded modules of these filtrations. To detect torsion elements, we introduce a homomorphism on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>Y</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <mi>IC</mi>\u0000 <mo>/</mo>\u0000 <msub>\u0000 <mi>Y</mi>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$Y_nmathcal {IC}/Y_{n+1}$</annotation>\u0000 </semantics></math> induced by the degree <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$n+2$</annotation>\u0000 </semantics></math> part of the LMO functor. Additionally, we provide a formula that computes this homomorphism under clasper surgery, and use it to demonstrate that every nontrivial torsion element in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>Y</mi>\u0000 <mn>6</mn>\u0000 </msub>\u0000 <mi>IC</mi>\u0000 <mo>/</mo>\u0000 <msub>\u0000 <mi>Y</mi>\u0000 <mn>7</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$Y_6mathcal {IC}/Y_7$</annotation>\u0000 </semantics></math> has order 3.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144520190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The motivic Adams conjecture 动机亚当斯猜想
IF 0.8 2区 数学
Journal of Topology Pub Date : 2025-06-04 DOI: 10.1112/topo.70026
Alexey Ananyevskiy, Elden Elmanto, Oliver Röndigs, Maria Yakerson
{"title":"The motivic Adams conjecture","authors":"Alexey Ananyevskiy,&nbsp;Elden Elmanto,&nbsp;Oliver Röndigs,&nbsp;Maria Yakerson","doi":"10.1112/topo.70026","DOIUrl":"https://doi.org/10.1112/topo.70026","url":null,"abstract":"<p>We solve a motivic version of the Adams conjecture with the exponential characteristic of the base field inverted. In the way of the proof,, we obtain a motivic version of mod <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math> Dold theorem and give a motivic version of Brown's trick studying the homogeneous variety <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>N</mi>\u0000 <msub>\u0000 <mi>GL</mi>\u0000 <mi>r</mi>\u0000 </msub>\u0000 </msub>\u0000 <mi>T</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mrow>\u0000 <mo>∖</mo>\u0000 </mrow>\u0000 <msub>\u0000 <mi>GL</mi>\u0000 <mi>r</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$(N_{mathrm{GL}_r} T)backslash mathrm{GL}_r$</annotation>\u0000 </semantics></math> which turns out to be not stably <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>A</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$mathbf {A}^1$</annotation>\u0000 </semantics></math>-connected. We also show that the higher motivic stable stems are of bounded torsion.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 2","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144214126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homological Lie brackets on moduli spaces and pushforward operations in twisted K-theory 模空间上的同调李括号与扭曲k理论中的推进运算
IF 0.8 2区 数学
Journal of Topology Pub Date : 2025-05-29 DOI: 10.1112/topo.70025
Markus Upmeier
{"title":"Homological Lie brackets on moduli spaces and pushforward operations in twisted K-theory","authors":"Markus Upmeier","doi":"10.1112/topo.70025","DOIUrl":"https://doi.org/10.1112/topo.70025","url":null,"abstract":"<p>We develop a general theory of pushforward operations for principal <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-bundles equipped with a certain type of orientation. In the case <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 <mo>=</mo>\u0000 <mrow>\u0000 <mi>B</mi>\u0000 <mi>U</mi>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$G={Bmathrm{U}(1)}$</annotation>\u0000 </semantics></math> and orientations in twisted K-theory, we construct two pushforward operations, the projective Euler operation, whose existence was conjectured by Joyce, and the projective rank operation. We classify all stable pushforward operations in this context and show that they are all generated by the projective Euler and rank operation. As an application, we construct a graded Lie algebra structure on the homology of a commutative H-space with a compatible <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>B</mi>\u0000 <mi>U</mi>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>${Bmathrm{U}(1)}$</annotation>\u0000 </semantics></math>-action and orientation. These play an important role in the context of wall-crossing formulas in enumerative geometry.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 2","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144171596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounded projections to the Z $mathcal {Z}$ -factor graph Z $mathcal {Z}$ -因子图的有界投影
IF 0.8 2区 数学
Journal of Topology Pub Date : 2025-05-27 DOI: 10.1112/topo.70024
Matt Clay, Caglar Uyanik
{"title":"Bounded projections to the \u0000 \u0000 Z\u0000 $mathcal {Z}$\u0000 -factor graph","authors":"Matt Clay,&nbsp;Caglar Uyanik","doi":"10.1112/topo.70024","DOIUrl":"https://doi.org/10.1112/topo.70024","url":null,"abstract":"&lt;p&gt;Suppose that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a free product &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;∗&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;∗&lt;/mo&gt;\u0000 &lt;mi&gt;⋯&lt;/mi&gt;\u0000 &lt;mo&gt;∗&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;∗&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$G = A_1 * A_2* cdots * A_k * F_N$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, where each of the groups &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$A_i$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is torsion-free and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$F_N$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a free group of rank &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;annotation&gt;$N$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;O&lt;/mi&gt;\u0000 &lt;annotation&gt;$mathcal {O}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be the deformation space associated to this free product decomposition. We show that the diameter of the projection of the subset of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;O&lt;/mi&gt;\u0000 &lt;annotation&gt;$mathcal {O}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; where a given element has bounded length to the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;Z&lt;/mi&gt;\u0000 &lt;annotation&gt;$mathcal {Z}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-factor graph is bounded, where the diameter bound depends only on the length bound. This relies on an analysis of the boundary of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; as a hyperbolic group relative to the collection of subgroups &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 ","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 2","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144140692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simple closed curves, non-kernel homology and Magnus embedding 简单闭曲线,非核同调和Magnus嵌入
IF 0.8 2区 数学
Journal of Topology Pub Date : 2025-04-30 DOI: 10.1112/topo.70023
Adam Klukowski
{"title":"Simple closed curves, non-kernel homology and Magnus embedding","authors":"Adam Klukowski","doi":"10.1112/topo.70023","DOIUrl":"https://doi.org/10.1112/topo.70023","url":null,"abstract":"<p>We consider the subspace of the homology of a covering space spanned by lifts of simple closed curves. Our main result is the existence of unbranched covers of surfaces where this is a proper subspace. More generally, for a fixed finite solvable quotient of the fundamental group we exhibit a cover whose homology is not generated by the lifts of curves in the complement of its kernel. We explain how the existing approach of Malestein and Putman (for branched covers) relates to the Magnus embedding, and by doing so we simplify their construction. We then generalise it to unbranched covers by producing embeddings of surface groups into units of certain graded associative algebras, which may be of independent interest.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 2","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143893027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum: Strong 𝔸1-invariance of 𝔸1-connected components of reductive algebraic groups 勘误:还原代数群的𝔸1-connected分量的强𝔸1-invariance
IF 0.8 2区 数学
Journal of Topology Pub Date : 2025-04-17 DOI: 10.1112/topo.70022
Chetan Balwe, Amit Hogadi, Anand Sawant
{"title":"Corrigendum: Strong 𝔸1-invariance of 𝔸1-connected components of reductive algebraic groups","authors":"Chetan Balwe,&nbsp;Amit Hogadi,&nbsp;Anand Sawant","doi":"10.1112/topo.70022","DOIUrl":"https://doi.org/10.1112/topo.70022","url":null,"abstract":"<p>The proof of [2, Lemma 5.1] is incomplete as it relies on some results in [4], the proof of which contains a gap. The goal of this note is to give a complete and self-contained proof of [2, Lemma 5.1].</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 2","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143840613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Picard group in equivariant homotopy theory via stable module categories 通过稳定模范畴的等变同伦理论中的Picard群
IF 0.8 2区 数学
Journal of Topology Pub Date : 2025-04-09 DOI: 10.1112/topo.70020
Achim Krause
{"title":"The Picard group in equivariant homotopy theory via stable module categories","authors":"Achim Krause","doi":"10.1112/topo.70020","DOIUrl":"https://doi.org/10.1112/topo.70020","url":null,"abstract":"<p>We develop a mechanism of “isotropy separation for compact objects” that explicitly describes an invertible <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-spectrum through its collection of geometric fixed points and gluing data located in certain variants of the stable module category. As an application, we carry out a complete analysis of possible combinations of geometric fixed points of invertible <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-spectra in the case <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 <mo>=</mo>\u0000 <msub>\u0000 <mi>A</mi>\u0000 <mn>5</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$G=A_5$</annotation>\u0000 </semantics></math>. A further application is given by showing that the Picard groups of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mo>Sp</mo>\u0000 <mi>G</mi>\u0000 </msup>\u0000 <annotation>$operatorname{Sp}^G$</annotation>\u0000 </semantics></math> and a category of derived Mackey functors agree.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 2","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143801878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信