{"title":"Homological Lie brackets on moduli spaces and pushforward operations in twisted K-theory","authors":"Markus Upmeier","doi":"10.1112/topo.70025","DOIUrl":"https://doi.org/10.1112/topo.70025","url":null,"abstract":"<p>We develop a general theory of pushforward operations for principal <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-bundles equipped with a certain type of orientation. In the case <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 <mo>=</mo>\u0000 <mrow>\u0000 <mi>B</mi>\u0000 <mi>U</mi>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$G={Bmathrm{U}(1)}$</annotation>\u0000 </semantics></math> and orientations in twisted K-theory, we construct two pushforward operations, the projective Euler operation, whose existence was conjectured by Joyce, and the projective rank operation. We classify all stable pushforward operations in this context and show that they are all generated by the projective Euler and rank operation. As an application, we construct a graded Lie algebra structure on the homology of a commutative H-space with a compatible <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>B</mi>\u0000 <mi>U</mi>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>${Bmathrm{U}(1)}$</annotation>\u0000 </semantics></math>-action and orientation. These play an important role in the context of wall-crossing formulas in enumerative geometry.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 2","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144171596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bounded projections to the \u0000 \u0000 Z\u0000 $mathcal {Z}$\u0000 -factor graph","authors":"Matt Clay, Caglar Uyanik","doi":"10.1112/topo.70024","DOIUrl":"https://doi.org/10.1112/topo.70024","url":null,"abstract":"<p>Suppose that <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> is a free product <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 <mo>=</mo>\u0000 <msub>\u0000 <mi>A</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>∗</mo>\u0000 <msub>\u0000 <mi>A</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>∗</mo>\u0000 <mi>⋯</mi>\u0000 <mo>∗</mo>\u0000 <msub>\u0000 <mi>A</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <mo>∗</mo>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mi>N</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$G = A_1 * A_2* cdots * A_k * F_N$</annotation>\u0000 </semantics></math>, where each of the groups <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>A</mi>\u0000 <mi>i</mi>\u0000 </msub>\u0000 <annotation>$A_i$</annotation>\u0000 </semantics></math> is torsion-free and <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mi>N</mi>\u0000 </msub>\u0000 <annotation>$F_N$</annotation>\u0000 </semantics></math> is a free group of rank <span></span><math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$N$</annotation>\u0000 </semantics></math>. Let <span></span><math>\u0000 <semantics>\u0000 <mi>O</mi>\u0000 <annotation>$mathcal {O}$</annotation>\u0000 </semantics></math> be the deformation space associated to this free product decomposition. We show that the diameter of the projection of the subset of <span></span><math>\u0000 <semantics>\u0000 <mi>O</mi>\u0000 <annotation>$mathcal {O}$</annotation>\u0000 </semantics></math> where a given element has bounded length to the <span></span><math>\u0000 <semantics>\u0000 <mi>Z</mi>\u0000 <annotation>$mathcal {Z}$</annotation>\u0000 </semantics></math>-factor graph is bounded, where the diameter bound depends only on the length bound. This relies on an analysis of the boundary of <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> as a hyperbolic group relative to the collection of subgroups <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>A</mi>\u0000 ","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 2","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144140692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}