Homological Lie brackets on moduli spaces and pushforward operations in twisted K-theory

IF 0.8 2区 数学 Q2 MATHEMATICS
Markus Upmeier
{"title":"Homological Lie brackets on moduli spaces and pushforward operations in twisted K-theory","authors":"Markus Upmeier","doi":"10.1112/topo.70025","DOIUrl":null,"url":null,"abstract":"<p>We develop a general theory of pushforward operations for principal <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-bundles equipped with a certain type of orientation. In the case <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>=</mo>\n <mrow>\n <mi>B</mi>\n <mi>U</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$G={B\\mathrm{U}(1)}$</annotation>\n </semantics></math> and orientations in twisted K-theory, we construct two pushforward operations, the projective Euler operation, whose existence was conjectured by Joyce, and the projective rank operation. We classify all stable pushforward operations in this context and show that they are all generated by the projective Euler and rank operation. As an application, we construct a graded Lie algebra structure on the homology of a commutative H-space with a compatible <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mi>U</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>${B\\mathrm{U}(1)}$</annotation>\n </semantics></math>-action and orientation. These play an important role in the context of wall-crossing formulas in enumerative geometry.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.70025","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a general theory of pushforward operations for principal G $G$ -bundles equipped with a certain type of orientation. In the case G = B U ( 1 ) $G={B\mathrm{U}(1)}$ and orientations in twisted K-theory, we construct two pushforward operations, the projective Euler operation, whose existence was conjectured by Joyce, and the projective rank operation. We classify all stable pushforward operations in this context and show that they are all generated by the projective Euler and rank operation. As an application, we construct a graded Lie algebra structure on the homology of a commutative H-space with a compatible B U ( 1 ) ${B\mathrm{U}(1)}$ -action and orientation. These play an important role in the context of wall-crossing formulas in enumerative geometry.

模空间上的同调李括号与扭曲k理论中的推进运算
我们发展了具有一定定向类型的主G$ G$ -束的推进运算的一般理论。在扭曲k理论中的G= B U (1) $G={B\ maththrm {U}(1)}$和方向的情况下,我们构造了两个推进运算,即投影欧拉运算,其存在性由Joyce猜想;投影秩运算。我们对这种情况下所有稳定的前推运算进行了分类,并证明它们都是由投影欧拉和秩运算生成的。作为一个应用,我们在具有相容B U (1) ${B\mathrm{U}(1)}$ -作用和方向的可交换h空间的同调上构造了一个梯度李代数结构。这些在列举几何中的过墙公式中起着重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信