Journal of Topology最新文献

筛选
英文 中文
Symplectic hats 辛的帽子
IF 1.1 2区 数学
Journal of Topology Pub Date : 2022-10-12 DOI: 10.1112/topo.12258
John B. Etnyre, Marco Golla
{"title":"Symplectic hats","authors":"John B. Etnyre,&nbsp;Marco Golla","doi":"10.1112/topo.12258","DOIUrl":"10.1112/topo.12258","url":null,"abstract":"<p>We study relative symplectic cobordisms between contact submanifolds, and in particular relative symplectic cobordisms to the empty set, that we call hats. While we make some observations in higher dimensions, we focus on the case of transverse knots in the standard 3-sphere, and hats in blow-ups of the (punctured) complex projective planes. We apply the construction to give constraints on the algebraic topology of fillings of double covers of the 3-sphere branched over certain transverse quasipositive knots.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12258","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47383736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Homological stability for Iwahori–Hecke algebras Iwahori-Hecke代数的同调稳定性
IF 1.1 2区 数学
Journal of Topology Pub Date : 2022-10-08 DOI: 10.1112/topo.12262
Richard Hepworth
{"title":"Homological stability for Iwahori–Hecke algebras","authors":"Richard Hepworth","doi":"10.1112/topo.12262","DOIUrl":"10.1112/topo.12262","url":null,"abstract":"<p>We show that the Iwahori–Hecke algebras <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>H</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>$mathcal {H}_n$</annotation>\u0000 </semantics></math> of type <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>A</mi>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 <annotation>$A_{n-1}$</annotation>\u0000 </semantics></math> satisfy homological stability, where homology is interpreted as an appropriate Tor group. Our result precisely recovers Nakaoka's homological stability result for the symmetric groups in the case that the defining parameter is equal to 1. We believe that this paper, and our joint work with Boyd on Temperley–Lieb algebras, are the first time that the techniques of homological stability have been applied to algebras that are not group algebras.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12262","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44124588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
The Picard group of the universal moduli stack of principal bundles on pointed smooth curves 点光滑曲线上主束的泛模堆的Picard群
IF 1.1 2区 数学
Journal of Topology Pub Date : 2022-09-27 DOI: 10.1112/topo.12257
Roberto Fringuelli, Filippo Viviani
{"title":"The Picard group of the universal moduli stack of principal bundles on pointed smooth curves","authors":"Roberto Fringuelli,&nbsp;Filippo Viviani","doi":"10.1112/topo.12257","DOIUrl":"10.1112/topo.12257","url":null,"abstract":"<p>For any smooth connected linear algebraic group <math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> over an algebraically closed field <math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>, we describe the Picard group of the universal moduli stack of principal <math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-bundles over pointed smooth <math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>-projective curves.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41376353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Characterizing divergence and thickness in right-angled Coxeter groups 直角Coxeter群的散度和厚度特征
IF 1.1 2区 数学
Journal of Topology Pub Date : 2022-09-27 DOI: 10.1112/topo.12267
Ivan Levcovitz
{"title":"Characterizing divergence and thickness in right-angled Coxeter groups","authors":"Ivan Levcovitz","doi":"10.1112/topo.12267","DOIUrl":"10.1112/topo.12267","url":null,"abstract":"<p>We completely classify the possible divergence functions for right-angled Coxeter groups (RACGs). In particular, we show that the divergence of any such group is either polynomial, exponential, or infinite. We prove that a RACG is strongly thick of order <math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math> if and only if its divergence function is a polynomial of degree <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$k+1$</annotation>\u0000 </semantics></math>. Moreover, we show that the exact divergence function of a RACG can easily be computed from its defining graph by an invariant we call the hypergraph index.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12267","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44783436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Surface-like boundaries of hyperbolic groups 双曲群的曲面边界
IF 1.1 2区 数学
Journal of Topology Pub Date : 2022-09-20 DOI: 10.1112/topo.12266
Benjamin Beeker, Nir Lazarovich
{"title":"Surface-like boundaries of hyperbolic groups","authors":"Benjamin Beeker,&nbsp;Nir Lazarovich","doi":"10.1112/topo.12266","DOIUrl":"10.1112/topo.12266","url":null,"abstract":"<p>We classify the boundaries of hyperbolic groups that have enough quasiconvex codimension-1 surface subgroups with trivial or cyclic intersections.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12266","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48525812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Braid loops with infinite monodromy on the Legendrian contact DGA 在Legendrian接触DGA上具有无限单态的编织环
IF 1.1 2区 数学
Journal of Topology Pub Date : 2022-09-19 DOI: 10.1112/topo.12264
Roger Casals, Lenhard Ng
{"title":"Braid loops with infinite monodromy on the Legendrian contact DGA","authors":"Roger Casals,&nbsp;Lenhard Ng","doi":"10.1112/topo.12264","DOIUrl":"10.1112/topo.12264","url":null,"abstract":"<p>We present the first examples of elements in the fundamental group of the space of Legendrian links in <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>ξ</mi>\u0000 <mtext>st</mtext>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(mathbb {S}^3,xi _{text{st}})$</annotation>\u0000 </semantics></math> whose action on the Legendrian contact DGA is of infinite order. This allows us to construct the first families of Legendrian links that can be shown to admit infinitely many Lagrangian fillings by Floer-theoretic techniques. These new families include the first-known Legendrian links with infinitely many fillings that are not rainbow closures of positive braids, and the smallest Legendrian link with infinitely many fillings known to date. We discuss how to use our examples to construct other links with infinitely many fillings, and in particular give the first Floer-theoretic proof that Legendrian <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mi>m</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(n,m)$</annotation>\u0000 </semantics></math> torus links have infinitely many Lagrangian fillings if <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>⩾</mo>\u0000 <mn>3</mn>\u0000 <mo>,</mo>\u0000 <mi>m</mi>\u0000 <mo>⩾</mo>\u0000 <mn>6</mn>\u0000 </mrow>\u0000 <annotation>$ngeqslant 3,mgeqslant 6$</annotation>\u0000 </semantics></math> or <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mi>m</mi>\u0000 <mo>)</mo>\u0000 <mo>=</mo>\u0000 <mo>(</mo>\u0000 <mn>4</mn>\u0000 <mo>,</mo>\u0000 <mn>4</mn>\u0000 <mo>)</mo>\u0000 <mo>,</mo>\u0000 <mo>(</mo>\u0000 <mn>4</mn>\u0000 <mo>,</mo>\u0000 <mn>5</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(n,m)=(4,4),(4,5)$</annotation>\u0000 </semantics></math>. In addition, for any given higher genus, we construct a Weinstein 4-manifold homotopic to the 2-sphere whose wrapped Fukaya category can distinguish infinitely many exact closed Lagrangian surfaces of that genus in the same smooth isotopy class, but distinct Hamiltonian isotopy classes. A key technical ingredient behind our results is a new combinatorial formula for decomposable cob","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46165977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
The topological modular forms of R P 2 $mathbb {R}P^2$ and R P 2 ∧ C P 2 $mathbb {R}P^2 wedge mathbb {C}P^2$ rp2 $mathbb {R}P^2$和rp2∧cp2 $mathbb {R}P^2 wedge mathbb {C}P^2$的拓扑模形式
IF 1.1 2区 数学
Journal of Topology Pub Date : 2022-09-19 DOI: 10.1112/topo.12263
Agnès Beaudry, Irina Bobkova, Viet-Cuong Pham, Zhouli Xu
{"title":"The topological modular forms of \u0000 \u0000 \u0000 R\u0000 \u0000 P\u0000 2\u0000 \u0000 \u0000 $mathbb {R}P^2$\u0000 and \u0000 \u0000 \u0000 R\u0000 \u0000 P\u0000 2\u0000 \u0000 ∧\u0000 C\u0000 \u0000 P\u0000 2\u0000 \u0000 \u0000 $mathbb {R}P^2 wedge mathbb {C}P^2$","authors":"Agnès Beaudry,&nbsp;Irina Bobkova,&nbsp;Viet-Cuong Pham,&nbsp;Zhouli Xu","doi":"10.1112/topo.12263","DOIUrl":"10.1112/topo.12263","url":null,"abstract":"<p>We study the elliptic spectral sequence computing <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mi>m</mi>\u0000 <msub>\u0000 <mi>f</mi>\u0000 <mo>∗</mo>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>R</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$tmf_*(mathbb {R}P^2)$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mi>m</mi>\u0000 <msub>\u0000 <mi>f</mi>\u0000 <mo>∗</mo>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>R</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>∧</mo>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$tmf_* (mathbb {R} P^2 wedge mathbb {C} P^2)$</annotation>\u0000 </semantics></math>. Specifically, we compute all differentials and resolve exotic extensions by 2, <math>\u0000 <semantics>\u0000 <mi>η</mi>\u0000 <annotation>$eta$</annotation>\u0000 </semantics></math>, and <math>\u0000 <semantics>\u0000 <mi>ν</mi>\u0000 <annotation>$nu$</annotation>\u0000 </semantics></math>. For <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mi>m</mi>\u0000 <msub>\u0000 <mi>f</mi>\u0000 <mo>∗</mo>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>R</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>∧</mo>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$tmf_* (mathbb {R} P^2 wedge mathbb {C} P^2)$</annotation>\u0000 </semantics></math>, we also compute the effect of the <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>v</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <annotation>$v_1$</annotation>\u0000 </semantics></math>-self maps of <math>\u0000 <semantics>\u0000 ","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48472803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the EO $mathrm{EO}$ -orientability of vector bundles 论向量束的EO $ mathm {EO}$ -可定向性
IF 1.1 2区 数学
Journal of Topology Pub Date : 2022-09-19 DOI: 10.1112/topo.12265
P. Bhattacharya, H. Chatham
{"title":"On the \u0000 \u0000 EO\u0000 $mathrm{EO}$\u0000 -orientability of vector bundles","authors":"P. Bhattacharya,&nbsp;H. Chatham","doi":"10.1112/topo.12265","DOIUrl":"10.1112/topo.12265","url":null,"abstract":"<p>We study the orientability of vector bundles with respect to a family of cohomology theories called <math>\u0000 <semantics>\u0000 <mi>EO</mi>\u0000 <annotation>$mathrm{EO}$</annotation>\u0000 </semantics></math>-theories. The <math>\u0000 <semantics>\u0000 <mi>EO</mi>\u0000 <annotation>$mathrm{EO}$</annotation>\u0000 </semantics></math>-theories are higher height analogues of real <math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$mathrm{K}$</annotation>\u0000 </semantics></math>-theory <math>\u0000 <semantics>\u0000 <mi>KO</mi>\u0000 <annotation>$mathrm{KO}$</annotation>\u0000 </semantics></math>. For each <math>\u0000 <semantics>\u0000 <mi>EO</mi>\u0000 <annotation>$mathrm{EO}$</annotation>\u0000 </semantics></math>-theory, we prove that the direct sum of <math>\u0000 <semantics>\u0000 <mi>i</mi>\u0000 <annotation>$i$</annotation>\u0000 </semantics></math> copies of any vector bundle is <math>\u0000 <semantics>\u0000 <mi>EO</mi>\u0000 <annotation>$mathrm{EO}$</annotation>\u0000 </semantics></math>-orientable for some specific integer <math>\u0000 <semantics>\u0000 <mi>i</mi>\u0000 <annotation>$i$</annotation>\u0000 </semantics></math>. Using a splitting principal, we reduce to the case of the canonical line bundle over <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>CP</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <annotation>$mathbb {CP}^{infty }$</annotation>\u0000 </semantics></math>. Our method involves understanding the action of an order <math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math> subgroup of the Morava stabilizer group on the Morava <math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$mathrm{E}$</annotation>\u0000 </semantics></math>-theory of <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>CP</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <annotation>$mathbb {CP}^{infty }$</annotation>\u0000 </semantics></math>. Our calculations have another application: We determine the homotopy type of the <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$mathrm{S}^{1}$</annotation>\u0000 </semantics></math>-Tate spectrum associated to the trivial action of <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$mathrm{S}^{1}$</annotation>\u0000 </semantics></math> on all <math>\u0000 <semantics>\u0000 <mi>EO</mi>\u0000 ","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47957925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Polar degree and vanishing cycles 极度和消失循环
IF 1.1 2区 数学
Journal of Topology Pub Date : 2022-09-17 DOI: 10.1112/topo.12260
Dirk Siersma, Mihai Tibăr
{"title":"Polar degree and vanishing cycles","authors":"Dirk Siersma,&nbsp;Mihai Tibăr","doi":"10.1112/topo.12260","DOIUrl":"10.1112/topo.12260","url":null,"abstract":"<p>We prove that the polar degree of an arbitrarily singular projective hypersurface can be decomposed as a sum of non-negative numbers which quantify local vanishing cycles of two different types. This yields lower bounds for the polar degree of any singular projective hypersurface.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43428452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Covers of surfaces, Kleinian groups and the curve complex 曲面的覆盖,Kleinian群和曲线复合体
IF 1.1 2区 数学
Journal of Topology Pub Date : 2022-09-17 DOI: 10.1112/topo.12261
Tarik Aougab, Priyam Patel, Samuel J. Taylor
{"title":"Covers of surfaces, Kleinian groups and the curve complex","authors":"Tarik Aougab,&nbsp;Priyam Patel,&nbsp;Samuel J. Taylor","doi":"10.1112/topo.12261","DOIUrl":"10.1112/topo.12261","url":null,"abstract":"<p>We show that curve complex distance is coarsely equal to electric distance in hyperbolic manifolds associated to Kleinian surface groups, up to errors that are polynomial in the complexity of the underlying surface. We then use this to control the quasi-isometry constants of maps between curve complexes induced by finite covers of surfaces. This makes effective previously known results, in the sense that the error terms are explicitly determined, and allows us to give several applications. In particular, we effectively relate the electric circumference of a fibered manifold to the curve complex translation length of its monodromy, and we give quantitative bounds on virtual specialness for cube complexes dual to curves on surfaces.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45964613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信