Stable isoperimetric ratios and the Hodge Laplacian of hyperbolic manifolds

Pub Date : 2023-05-05 DOI:10.1112/topo.12291
Cameron Gates Rudd
{"title":"Stable isoperimetric ratios and the Hodge Laplacian of hyperbolic manifolds","authors":"Cameron Gates Rudd","doi":"10.1112/topo.12291","DOIUrl":null,"url":null,"abstract":"<p>We show that for a closed hyperbolic 3-manifold, the size of the first eigenvalue of the Hodge Laplacian acting on coexact 1-forms is comparable to an isoperimetric ratio relating geodesic length and stable commutator length with comparison constants that depend polynomially on the volume and on a lower bound on injectivity radius, refining estimates of Lipnowski and Stern. We use this estimate to show that there exist sequences of closed hyperbolic 3-manifolds with injectivity radius bounded below and volume going to infinity for which the 1-form Laplacian has spectral gap vanishing exponentially fast in the volume.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12291","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We show that for a closed hyperbolic 3-manifold, the size of the first eigenvalue of the Hodge Laplacian acting on coexact 1-forms is comparable to an isoperimetric ratio relating geodesic length and stable commutator length with comparison constants that depend polynomially on the volume and on a lower bound on injectivity radius, refining estimates of Lipnowski and Stern. We use this estimate to show that there exist sequences of closed hyperbolic 3-manifolds with injectivity radius bounded below and volume going to infinity for which the 1-form Laplacian has spectral gap vanishing exponentially fast in the volume.

Abstract Image

分享
查看原文
稳定等周比与双曲流形的Hodge-Laplace
我们证明,对于闭合双曲3流形,作用于Coexact1-形式的Hodge-Laplacean的第一特征值的大小与测地线长度和稳定换向器长度的等周比相当,其比较常数多项式依赖于体积和内射半径的下界,改进了Lipnowski和Stern的估计。我们使用这个估计来证明存在具有内射半径在以下且体积无穷大的闭双曲3流形序列,对于该序列,1型拉普拉斯算子的谱隙在体积中以指数形式快速消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信