{"title":"Toroidal integer homology three-spheres have irreducible \n \n \n S\n U\n (\n 2\n )\n \n $SU(2)$\n -representations","authors":"Tye Lidman, Juanita Pinzón-Caicedo, Raphael Zentner","doi":"10.1112/topo.12275","DOIUrl":null,"url":null,"abstract":"<p>We prove that if an integer homology three-sphere contains an embedded incompressible torus, then its fundamental group admits irreducible <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mi>U</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$SU(2)$</annotation>\n </semantics></math>-representations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12275","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We prove that if an integer homology three-sphere contains an embedded incompressible torus, then its fundamental group admits irreducible -representations.