{"title":"粉碎力的西格尔猜想","authors":"Håkon Schad Bergsaker, John Rognes","doi":"10.1112/topo.12290","DOIUrl":null,"url":null,"abstract":"<p>We prove that the comparison map from <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-fixed points to <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-homotopy fixed points, for the <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-fold smash power of a bounded below spectrum <math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math>, becomes an equivalence after <math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-completion if <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is a finite <math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-group and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mo>;</mo>\n <msub>\n <mi>F</mi>\n <mi>p</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H_*(B; \\mathbb {F}_p)$</annotation>\n </semantics></math> is of finite type. We also prove that the map becomes an equivalence after <math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$I(G)$</annotation>\n </semantics></math>-completion if <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is any finite group and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\pi _*(B)$</annotation>\n </semantics></math> is of finite type, where <math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$I(G)$</annotation>\n </semantics></math> is the augmentation ideal in the Burnside ring.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12290","citationCount":"0","resultStr":"{\"title\":\"The Segal conjecture for smash powers\",\"authors\":\"Håkon Schad Bergsaker, John Rognes\",\"doi\":\"10.1112/topo.12290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the comparison map from <math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>-fixed points to <math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>-homotopy fixed points, for the <math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>-fold smash power of a bounded below spectrum <math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$B$</annotation>\\n </semantics></math>, becomes an equivalence after <math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-completion if <math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> is a finite <math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-group and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mo>∗</mo>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>B</mi>\\n <mo>;</mo>\\n <msub>\\n <mi>F</mi>\\n <mi>p</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H_*(B; \\\\mathbb {F}_p)$</annotation>\\n </semantics></math> is of finite type. We also prove that the map becomes an equivalence after <math>\\n <semantics>\\n <mrow>\\n <mi>I</mi>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$I(G)$</annotation>\\n </semantics></math>-completion if <math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> is any finite group and <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>π</mi>\\n <mo>∗</mo>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>B</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\pi _*(B)$</annotation>\\n </semantics></math> is of finite type, where <math>\\n <semantics>\\n <mrow>\\n <mi>I</mi>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$I(G)$</annotation>\\n </semantics></math> is the augmentation ideal in the Burnside ring.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12290\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove that the comparison map from -fixed points to -homotopy fixed points, for the -fold smash power of a bounded below spectrum , becomes an equivalence after -completion if is a finite -group and is of finite type. We also prove that the map becomes an equivalence after -completion if is any finite group and is of finite type, where is the augmentation ideal in the Burnside ring.