The Segal conjecture for smash powers

Pub Date : 2023-04-11 DOI:10.1112/topo.12290
Håkon Schad Bergsaker, John Rognes
{"title":"The Segal conjecture for smash powers","authors":"Håkon Schad Bergsaker,&nbsp;John Rognes","doi":"10.1112/topo.12290","DOIUrl":null,"url":null,"abstract":"<p>We prove that the comparison map from <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-fixed points to <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-homotopy fixed points, for the <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-fold smash power of a bounded below spectrum <math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math>, becomes an equivalence after <math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-completion if <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is a finite <math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-group and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mo>;</mo>\n <msub>\n <mi>F</mi>\n <mi>p</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H_*(B; \\mathbb {F}_p)$</annotation>\n </semantics></math> is of finite type. We also prove that the map becomes an equivalence after <math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$I(G)$</annotation>\n </semantics></math>-completion if <math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is any finite group and <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mo>∗</mo>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\pi _*(B)$</annotation>\n </semantics></math> is of finite type, where <math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$I(G)$</annotation>\n </semantics></math> is the augmentation ideal in the Burnside ring.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12290","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the comparison map from G $G$ -fixed points to G $G$ -homotopy fixed points, for the G $G$ -fold smash power of a bounded below spectrum  B $B$ , becomes an equivalence after p $p$ -completion if G $G$ is a finite p $p$ -group and H ( B ; F p ) $H_*(B; \mathbb {F}_p)$ is of finite type. We also prove that the map becomes an equivalence after I ( G ) $I(G)$ -completion if G $G$ is any finite group and π ( B ) $\pi _*(B)$ is of finite type, where I ( G ) $I(G)$ is the augmentation ideal in the Burnside ring.

Abstract Image

分享
查看原文
粉碎力的西格尔猜想
我们证明了当G$G$是有限的p$p$-群并且H*(B;Fp)$H_*{F}_p)$是有限类型。我们还证明了当G$G$是任何有限群并且π*(B)$\pi_*(B。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信