Journal of Topology最新文献

筛选
英文 中文
Higher homotopy normalities in topological groups 拓扑群中的高同伦规范性
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-02-17 DOI: 10.1112/topo.12282
Mitsunobu Tsutaya
{"title":"Higher homotopy normalities in topological groups","authors":"Mitsunobu Tsutaya","doi":"10.1112/topo.12282","DOIUrl":"10.1112/topo.12282","url":null,"abstract":"<p>The purpose of this paper is to introduce <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>N</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>ℓ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$N_k(ell )$</annotation>\u0000 </semantics></math>-maps (<math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>⩽</mo>\u0000 <mi>k</mi>\u0000 <mo>,</mo>\u0000 <mi>ℓ</mi>\u0000 <mo>⩽</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation>$1leqslant k,ell leqslant infty$</annotation>\u0000 </semantics></math>), which describe higher homotopy normalities, and to study their basic properties and examples. An <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>N</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>ℓ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$N_k(ell )$</annotation>\u0000 </semantics></math>-map is defined with higher homotopical conditions. It is shown that a homomorphism is an <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>N</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>ℓ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$N_k(ell )$</annotation>\u0000 </semantics></math>-map if and only if there exists fiberwise maps between fiberwise projective spaces with some properties. Also, the homotopy quotient of an <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>N</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>k</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$N_k(k)$</annotation>\u0000 </semantics></math>-map is shown to be an <math>\u0000 <semantics>\u0000 <mi>H</mi>\u0000 <annotation>$H$</annotation>\u0000 </semantics></math>-space if its LS category is not greater than <math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>. As an application, we investigate when the inclusions <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>SU</mo>\u0000 <mo>(</mo>\u0000 <mi>m</mi>\u0000 <mo>)<","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":"234-263"},"PeriodicalIF":1.1,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41245322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gromov–Witten theory of complete intersections via nodal invariants 通过节点不变量的完全交的Gromov-Witten理论
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-02-17 DOI: 10.1112/topo.12284
Hülya Argüz, Pierrick Bousseau, Rahul Pandharipande, Dimitri Zvonkine
{"title":"Gromov–Witten theory of complete intersections via nodal invariants","authors":"Hülya Argüz,&nbsp;Pierrick Bousseau,&nbsp;Rahul Pandharipande,&nbsp;Dimitri Zvonkine","doi":"10.1112/topo.12284","DOIUrl":"10.1112/topo.12284","url":null,"abstract":"<p>We provide an inductive algorithm computing Gromov–Witten invariants in all genera with arbitrary insertions of all smooth complete intersections in projective space. We also prove that all Gromov–Witten classes of all smooth complete intersections in projective space belong to the tautological ring of the moduli space of stable curves. The main idea is to show that invariants with insertions of primitive cohomology classes are controlled by their monodromy and by invariants defined without primitive insertions but with imposed nodes in the domain curve. To compute these nodal Gromov–Witten invariants, we introduce the new notion of nodal relative Gromov–Witten invariants. We then prove a nodal degeneration formula and a relative splitting formula. These results for nodal relative Gromov–Witten theory are stated in complete generality and are of independent interest.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":"264-343"},"PeriodicalIF":1.1,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12284","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47334185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Families of diffeomorphisms and concordances detected by trivalent graphs 三价图检测的微分同胚族和调和族
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-02-14 DOI: 10.1112/topo.12283
Boris Botvinnik, Tadayuki Watanabe
{"title":"Families of diffeomorphisms and concordances detected by trivalent graphs","authors":"Boris Botvinnik,&nbsp;Tadayuki Watanabe","doi":"10.1112/topo.12283","DOIUrl":"10.1112/topo.12283","url":null,"abstract":"&lt;p&gt;We study families of diffeomorphisms detected by trivalent graphs via the Kontsevich classes. We specify some recent results and constructions of the second named author to show that those non-trivial elements in homotopy groups &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;π&lt;/mi&gt;\u0000 &lt;mo&gt;∗&lt;/mo&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Diff&lt;/mi&gt;\u0000 &lt;mi&gt;∂&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;⊗&lt;/mo&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$pi _*(Bmathrm{Diff}_{partial }(D^d))otimes {mathbb {Q}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; are lifted to homotopy groups of the moduli space of &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;h&lt;/mi&gt;\u0000 &lt;annotation&gt;$h$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-cobordisms &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;π&lt;/mi&gt;\u0000 &lt;mo&gt;∗&lt;/mo&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Diff&lt;/mi&gt;\u0000 &lt;mo&gt;⊔&lt;/mo&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;×&lt;/mo&gt;\u0000 &lt;mi&gt;I&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;⊗&lt;/mo&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$pi _*(Bmathrm{Diff}_{sqcup }(D^dtimes I))otimes {mathbb {Q}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. As a geometrical application, we show that those elements in &lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;π&lt;/mi&gt;\u0000 &lt;mo&gt;∗&lt;/mo&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Diff&lt;/mi&gt;\u0000 &lt;mi&gt;∂&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 ","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":"207-233"},"PeriodicalIF":1.1,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41633462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Simplicial volume and essentiality of manifolds fibered over spheres 球体上纤维流形的简单体积和本质
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-02-06 DOI: 10.1112/topo.12286
Thorben Kastenholz, Jens Reinhold
{"title":"Simplicial volume and essentiality of manifolds fibered over spheres","authors":"Thorben Kastenholz,&nbsp;Jens Reinhold","doi":"10.1112/topo.12286","DOIUrl":"10.1112/topo.12286","url":null,"abstract":"<p>We study the question when a manifold that fibers over a sphere can be rationally essential, or have positive simplicial volume. More concretely, we show that mapping tori of manifolds (whose fundamental groups can be quite arbitrary) of dimension <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 <mo>⩾</mo>\u0000 <mn>7</mn>\u0000 </mrow>\u0000 <annotation>$2n +1 geqslant 7$</annotation>\u0000 </semantics></math> with non-zero simplicial volume are very common. This contrasts the case of fiber bundles over a sphere of dimension <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>⩾</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$dgeqslant 2$</annotation>\u0000 </semantics></math>: we prove that their total spaces are rationally inessential if <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>⩾</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$dgeqslant 3$</annotation>\u0000 </semantics></math>, and always have simplicial volume 0. Using a result by Dranishnikov, we also deduce a surprising property of macroscopic dimension, and we give two applications to positive scalar curvature and characteristic classes, respectively.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":"192-206"},"PeriodicalIF":1.1,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12286","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41675764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Milnor number of non-isolated singularities of holomorphic foliations and its topological invariance 全纯叶的非孤立奇点Milnor数及其拓扑不变性
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-02-06 DOI: 10.1112/topo.12281
Arturo Fernández-Pérez, Gilcione Nonato Costa, Rudy Rosas Bazán
{"title":"On the Milnor number of non-isolated singularities of holomorphic foliations and its topological invariance","authors":"Arturo Fernández-Pérez,&nbsp;Gilcione Nonato Costa,&nbsp;Rudy Rosas Bazán","doi":"10.1112/topo.12281","DOIUrl":"10.1112/topo.12281","url":null,"abstract":"<p>We define the Milnor number of a one-dimensional holomorphic foliation <math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$mathcal {F}$</annotation>\u0000 </semantics></math> as the intersection number of two holomorphic sections with respect to a compact connected component <math>\u0000 <semantics>\u0000 <mi>C</mi>\u0000 <annotation>$C$</annotation>\u0000 </semantics></math> of its singular set. Under certain conditions, we prove that the Milnor number of <math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$mathcal {F}$</annotation>\u0000 </semantics></math> on a three-dimensional manifold with respect to <math>\u0000 <semantics>\u0000 <mi>C</mi>\u0000 <annotation>$C$</annotation>\u0000 </semantics></math> is invariant by <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$C^1$</annotation>\u0000 </semantics></math> topological equivalences.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":"176-191"},"PeriodicalIF":1.1,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41519115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large genus asymptotics for lengths of separating closed geodesics on random surfaces 随机曲面上分离闭测地线长度的大亏格渐近性
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-01-09 DOI: 10.1112/topo.12276
Xin Nie, Yunhui Wu, Yuhao Xue
{"title":"Large genus asymptotics for lengths of separating closed geodesics on random surfaces","authors":"Xin Nie,&nbsp;Yunhui Wu,&nbsp;Yuhao Xue","doi":"10.1112/topo.12276","DOIUrl":"10.1112/topo.12276","url":null,"abstract":"<p>In this paper, we investigate basic geometric quantities of a random hyperbolic surface of genus <math>\u0000 <semantics>\u0000 <mi>g</mi>\u0000 <annotation>$g$</annotation>\u0000 </semantics></math> with respect to the Weil–Petersson measure on the moduli space <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mi>g</mi>\u0000 </msub>\u0000 <annotation>$mathcal {M}_g$</annotation>\u0000 </semantics></math>. We show that as <math>\u0000 <semantics>\u0000 <mi>g</mi>\u0000 <annotation>$g$</annotation>\u0000 </semantics></math> goes to infinity, a generic surface <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>X</mi>\u0000 <mo>∈</mo>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mi>g</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$Xin mathcal {M}_g$</annotation>\u0000 </semantics></math> satisfies asymptotically: \u0000\u0000 </p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":"106-175"},"PeriodicalIF":1.1,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49377726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
End-periodic homeomorphisms and volumes of mapping tori 映射tori的端周期同胚与体积
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-01-06 DOI: 10.1112/topo.12277
Elizabeth Field, Heejoung Kim, Christopher Leininger, Marissa Loving
{"title":"End-periodic homeomorphisms and volumes of mapping tori","authors":"Elizabeth Field,&nbsp;Heejoung Kim,&nbsp;Christopher Leininger,&nbsp;Marissa Loving","doi":"10.1112/topo.12277","DOIUrl":"https://doi.org/10.1112/topo.12277","url":null,"abstract":"<p>Given an irreducible, end-periodic homeomorphism <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mo>:</mo>\u0000 <mi>S</mi>\u0000 <mo>→</mo>\u0000 <mi>S</mi>\u0000 </mrow>\u0000 <annotation>$f: S rightarrow S$</annotation>\u0000 </semantics></math> of a surface with finitely many ends, all accumulated by genus, the mapping torus, <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mi>f</mi>\u0000 </msub>\u0000 <annotation>$M_f$</annotation>\u0000 </semantics></math>, is the interior of a compact, irreducible, atoroidal 3-manifold <math>\u0000 <semantics>\u0000 <msub>\u0000 <mover>\u0000 <mi>M</mi>\u0000 <mo>¯</mo>\u0000 </mover>\u0000 <mi>f</mi>\u0000 </msub>\u0000 <annotation>$overline{M}_f$</annotation>\u0000 </semantics></math> with incompressible boundary. Our main result is an upper bound on the infimal hyperbolic volume of <math>\u0000 <semantics>\u0000 <msub>\u0000 <mover>\u0000 <mi>M</mi>\u0000 <mo>¯</mo>\u0000 </mover>\u0000 <mi>f</mi>\u0000 </msub>\u0000 <annotation>$overline{M}_f$</annotation>\u0000 </semantics></math> in terms of the translation length of <math>\u0000 <semantics>\u0000 <mi>f</mi>\u0000 <annotation>$f$</annotation>\u0000 </semantics></math> on the pants graph of <math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math>. This builds on work of Brock and Agol in the finite-type setting. We also construct a broad class of examples of irreducible, end-periodic homeomorphisms and use them to show that our bound is asymptotically sharp.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":"57-105"},"PeriodicalIF":1.1,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12277","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50122479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Random subcomplexes of finite buildings, and fibering of commutator subgroups of right-angled Coxeter groups 有限建筑物的随机子复合体和直角Coxeter群的换向子群的纤维化
IF 1.1 2区 数学
Journal of Topology Pub Date : 2023-01-06 DOI: 10.1112/topo.12278
Eduard Schesler, Matthew C. B. Zaremsky
{"title":"Random subcomplexes of finite buildings, and fibering of commutator subgroups of right-angled Coxeter groups","authors":"Eduard Schesler,&nbsp;Matthew C. B. Zaremsky","doi":"10.1112/topo.12278","DOIUrl":"10.1112/topo.12278","url":null,"abstract":"<p>The main theme of this paper is higher virtual algebraic fibering properties of right-angled Coxeter groups (RACGs), with a special focus on those whose defining flag complex is a finite building. We prove for particular classes of finite buildings that their random induced subcomplexes have a number of strong properties, most prominently that they are highly connected. From this we are able to deduce that the commutator subgroup of a RACG, with defining flag complex a finite building of a certain type, admits an epimorphism to <math>\u0000 <semantics>\u0000 <mi>Z</mi>\u0000 <annotation>$mathbb {Z}$</annotation>\u0000 </semantics></math> whose kernel has strong topological finiteness properties. We additionally use our techniques to present examples where the kernel is of type <math>\u0000 <semantics>\u0000 <msub>\u0000 <mo>F</mo>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$operatorname{F}_2$</annotation>\u0000 </semantics></math> but not <math>\u0000 <semantics>\u0000 <msub>\u0000 <mo>FP</mo>\u0000 <mn>3</mn>\u0000 </msub>\u0000 <annotation>$operatorname{FP}_3$</annotation>\u0000 </semantics></math>, and examples where the RACG is hyperbolic and the kernel is finitely generated and non-hyperbolic. The key tool we use is a generalization of an approach due to Jankiewicz–Norin–Wise involving Bestvina–Brady discrete Morse theory applied to the Davis complex of a RACG, together with some probabilistic arguments.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":"20-56"},"PeriodicalIF":1.1,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48971862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A criterion for density of the isoperiodic leaves in rank one affine invariant orbifolds 一阶仿射不变轨道中等周期叶密度的一个判据
IF 1.1 2区 数学
Journal of Topology Pub Date : 2022-12-28 DOI: 10.1112/topo.12279
Florent Ygouf
{"title":"A criterion for density of the isoperiodic leaves in rank one affine invariant orbifolds","authors":"Florent Ygouf","doi":"10.1112/topo.12279","DOIUrl":"https://doi.org/10.1112/topo.12279","url":null,"abstract":"<p>We define on any affine invariant orbifold <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$mathcal {M}$</annotation>\u0000 </semantics></math> a foliation <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>F</mi>\u0000 <mi>M</mi>\u0000 </msup>\u0000 <annotation>$mathcal {F}^{mathcal {M}}$</annotation>\u0000 </semantics></math> that generalizes the isoperiodic foliation on strata of the moduli space of translation surfaces and study the dynamics of its leaves in the rank 1 case. We establish a criterion that ensures the density of the leaves and provide two applications of this criterion. The first one is a classification of the dynamical behavior of the leaves of <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>F</mi>\u0000 <mi>M</mi>\u0000 </msup>\u0000 <annotation>$mathcal {F}^{mathcal {M}}$</annotation>\u0000 </semantics></math> when <math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$mathcal {M}$</annotation>\u0000 </semantics></math> is a connected component of a Prym eigenform locus in genus 2 or 3 and the second provides the first examples of dense isoperiodic leaves in the stratum <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mo>,</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathcal {H}(2,1,1)$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":"1-19"},"PeriodicalIF":1.1,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12279","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50146539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A criterion for density of the isoperiodic leaves in rank one affine invariant orbifolds 秩一仿射不变轨道中等周期叶密度的判据
IF 1.1 2区 数学
Journal of Topology Pub Date : 2022-12-28 DOI: 10.1112/topo.12279
Florent Ygouf
{"title":"A criterion for density of the isoperiodic leaves in rank one affine invariant orbifolds","authors":"Florent Ygouf","doi":"10.1112/topo.12279","DOIUrl":"https://doi.org/10.1112/topo.12279","url":null,"abstract":"We define on any affine invariant orbifold M$mathcal {M}$ a foliation FM$mathcal {F}^{mathcal {M}}$ that generalizes the isoperiodic foliation on strata of the moduli space of translation surfaces and study the dynamics of its leaves in the rank 1 case. We establish a criterion that ensures the density of the leaves and provide two applications of this criterion. The first one is a classification of the dynamical behavior of the leaves of FM$mathcal {F}^{mathcal {M}}$ when M$mathcal {M}$ is a connected component of a Prym eigenform locus in genus 2 or 3 and the second provides the first examples of dense isoperiodic leaves in the stratum H(2,1,1)$mathcal {H}(2,1,1)$ .","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63413602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信