具有至少两个端点的流形上的非负标量曲率

Pub Date : 2023-06-30 DOI:10.1112/topo.12303
Simone Cecchini, Daniel Räde, Rudolf Zeidler
{"title":"具有至少两个端点的流形上的非负标量曲率","authors":"Simone Cecchini,&nbsp;Daniel Räde,&nbsp;Rudolf Zeidler","doi":"10.1112/topo.12303","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> be an orientable connected <math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-dimensional manifold with <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>∈</mo>\n <mo>{</mo>\n <mn>6</mn>\n <mo>,</mo>\n <mn>7</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$n\\in \\lbrace 6,7\\rbrace$</annotation>\n </semantics></math> and let <math>\n <semantics>\n <mrow>\n <mi>Y</mi>\n <mo>⊂</mo>\n <mi>M</mi>\n </mrow>\n <annotation>$Y\\subset M$</annotation>\n </semantics></math> be a two-sided closed connected incompressible hypersurface that does not admit a metric of positive scalar curvature (abbreviated by psc). Moreover, suppose that the universal covers of <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> are either both spin or both nonspin. Using Gromov's <math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math>-bubbles, we show that <math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> does not admit a complete metric of psc. We provide an example showing that the spin/nonspin hypothesis cannot be dropped from the statement of this result. This answers, up to dimension 7, a question by Gromov for a large class of cases. Furthermore, we prove a related result for submanifolds of codimension 2. We deduce as special cases that, if <math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> does not admit a metric of psc and <math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mo>(</mo>\n <mi>Y</mi>\n <mo>)</mo>\n <mo>≠</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$\\dim (Y) \\ne 4$</annotation>\n </semantics></math>, then <math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>:</mo>\n <mo>=</mo>\n <mi>Y</mi>\n <mo>×</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$M := Y\\times \\mathbb {R}$</annotation>\n </semantics></math> does not carry a complete metric of psc and <math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>:</mo>\n <mo>=</mo>\n <mi>Y</mi>\n <mo>×</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$N := Y \\times \\mathbb {R}^2$</annotation>\n </semantics></math> does not carry a complete metric of uniformly psc, provided that <math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mo>(</mo>\n <mi>M</mi>\n <mo>)</mo>\n <mo>⩽</mo>\n <mn>7</mn>\n </mrow>\n <annotation>$\\dim (M) \\leqslant 7$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n <mo>⩽</mo>\n <mn>7</mn>\n </mrow>\n <annotation>$\\dim (N) \\leqslant 7$</annotation>\n </semantics></math>, respectively. This solves, up to dimension 7, a conjecture due to Rosenberg and Stolz in the case of orientable manifolds.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12303","citationCount":"4","resultStr":"{\"title\":\"Nonnegative scalar curvature on manifolds with at least two ends\",\"authors\":\"Simone Cecchini,&nbsp;Daniel Räde,&nbsp;Rudolf Zeidler\",\"doi\":\"10.1112/topo.12303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> be an orientable connected <math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-dimensional manifold with <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>∈</mo>\\n <mo>{</mo>\\n <mn>6</mn>\\n <mo>,</mo>\\n <mn>7</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$n\\\\in \\\\lbrace 6,7\\\\rbrace$</annotation>\\n </semantics></math> and let <math>\\n <semantics>\\n <mrow>\\n <mi>Y</mi>\\n <mo>⊂</mo>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$Y\\\\subset M$</annotation>\\n </semantics></math> be a two-sided closed connected incompressible hypersurface that does not admit a metric of positive scalar curvature (abbreviated by psc). Moreover, suppose that the universal covers of <math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mi>Y</mi>\\n <annotation>$Y$</annotation>\\n </semantics></math> are either both spin or both nonspin. Using Gromov's <math>\\n <semantics>\\n <mi>μ</mi>\\n <annotation>$\\\\mu$</annotation>\\n </semantics></math>-bubbles, we show that <math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> does not admit a complete metric of psc. We provide an example showing that the spin/nonspin hypothesis cannot be dropped from the statement of this result. This answers, up to dimension 7, a question by Gromov for a large class of cases. Furthermore, we prove a related result for submanifolds of codimension 2. We deduce as special cases that, if <math>\\n <semantics>\\n <mi>Y</mi>\\n <annotation>$Y$</annotation>\\n </semantics></math> does not admit a metric of psc and <math>\\n <semantics>\\n <mrow>\\n <mo>dim</mo>\\n <mo>(</mo>\\n <mi>Y</mi>\\n <mo>)</mo>\\n <mo>≠</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$\\\\dim (Y) \\\\ne 4$</annotation>\\n </semantics></math>, then <math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mo>:</mo>\\n <mo>=</mo>\\n <mi>Y</mi>\\n <mo>×</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$M := Y\\\\times \\\\mathbb {R}$</annotation>\\n </semantics></math> does not carry a complete metric of psc and <math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>:</mo>\\n <mo>=</mo>\\n <mi>Y</mi>\\n <mo>×</mo>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$N := Y \\\\times \\\\mathbb {R}^2$</annotation>\\n </semantics></math> does not carry a complete metric of uniformly psc, provided that <math>\\n <semantics>\\n <mrow>\\n <mo>dim</mo>\\n <mo>(</mo>\\n <mi>M</mi>\\n <mo>)</mo>\\n <mo>⩽</mo>\\n <mn>7</mn>\\n </mrow>\\n <annotation>$\\\\dim (M) \\\\leqslant 7$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mo>dim</mo>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>)</mo>\\n <mo>⩽</mo>\\n <mn>7</mn>\\n </mrow>\\n <annotation>$\\\\dim (N) \\\\leqslant 7$</annotation>\\n </semantics></math>, respectively. This solves, up to dimension 7, a conjecture due to Rosenberg and Stolz in the case of orientable manifolds.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12303\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

设M $M$是一个n∈的可定向连通的n $n$维流形{}$n\in \lbrace 6,7\rbrace$,设Y∧M $Y\subset M$是一个不允许有正标量曲率度规(简称psc)的双面封闭连通的不可压缩超曲面。此外,假设M $M$和Y $Y$的全域覆盖要么都是自旋的,要么都是非自旋的。利用Gromov的μ $\mu$‐气泡,我们证明M $M$不允许psc的完整度量。我们提供了一个例子,表明自旋/非自旋假设不能从这个结果的陈述中删除。这回答了,一直到7维,Gromov对一大类情况提出的问题。进一步证明了余维数为2的子流形的一个相关结果。作为特例,我们推导出,如果Y $Y$不承认psc的度规且dim(Y)≠4 $\dim (Y) \ne 4$,则M:=Y×R $M := Y\times \mathbb {R}$不携带psc的完全度规,N:=Y×R2 $N := Y \times \mathbb {R}^2$不携带均匀psc的完全度规,只要dim(M)≤7 $\dim (M) \leqslant 7$和dim(N)≤7 $\dim (N) \leqslant 7$。这解决了Rosenberg和Stolz关于可定向流形的猜想,一直到7维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonnegative scalar curvature on manifolds with at least two ends

分享
查看原文
Nonnegative scalar curvature on manifolds with at least two ends

Let M $M$ be an orientable connected n $n$ -dimensional manifold with n { 6 , 7 } $n\in \lbrace 6,7\rbrace$ and let Y M $Y\subset M$ be a two-sided closed connected incompressible hypersurface that does not admit a metric of positive scalar curvature (abbreviated by psc). Moreover, suppose that the universal covers of M $M$ and Y $Y$ are either both spin or both nonspin. Using Gromov's μ $\mu$ -bubbles, we show that M $M$ does not admit a complete metric of psc. We provide an example showing that the spin/nonspin hypothesis cannot be dropped from the statement of this result. This answers, up to dimension 7, a question by Gromov for a large class of cases. Furthermore, we prove a related result for submanifolds of codimension 2. We deduce as special cases that, if Y $Y$ does not admit a metric of psc and dim ( Y ) 4 $\dim (Y) \ne 4$ , then M : = Y × R $M := Y\times \mathbb {R}$ does not carry a complete metric of psc and N : = Y × R 2 $N := Y \times \mathbb {R}^2$ does not carry a complete metric of uniformly psc, provided that dim ( M ) 7 $\dim (M) \leqslant 7$ and dim ( N ) 7 $\dim (N) \leqslant 7$ , respectively. This solves, up to dimension 7, a conjecture due to Rosenberg and Stolz in the case of orientable manifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信