Group and Lie algebra filtrations and homotopy groups of spheres

Pub Date : 2023-06-01 DOI:10.1112/topo.12301
Laurent Bartholdi, Roman Mikhailov
{"title":"Group and Lie algebra filtrations and homotopy groups of spheres","authors":"Laurent Bartholdi,&nbsp;Roman Mikhailov","doi":"10.1112/topo.12301","DOIUrl":null,"url":null,"abstract":"<p>We establish a bridge between homotopy groups of spheres and commutator calculus in groups, and solve in this manner the “dimension problem” by providing a converse to Sjogren's theorem: every abelian group of bounded exponent can be embedded in the dimension quotient of a group. This is proven by embedding for arbitrary <math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$s,d$</annotation>\n </semantics></math> the torsion of the homotopy group <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mi>s</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>S</mi>\n <mi>d</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\pi _s(S^d)$</annotation>\n </semantics></math> into a dimension quotient, via a result of Wu. In particular, this invalidates some long-standing results in the literature, as for every prime <math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>, there is some <math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-torsion in <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mrow>\n <mn>2</mn>\n <mi>p</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\pi _{2p}(S^2)$</annotation>\n </semantics></math> by a result of Serre. We explain in this manner Rips's famous counterexample to the dimension conjecture in terms of the homotopy group <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mn>4</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>Z</mi>\n <mo>/</mo>\n <mn>2</mn>\n <mi>Z</mi>\n </mrow>\n <annotation>$\\pi _4(S^2)=\\mathbb {Z}/2\\mathbb {Z}$</annotation>\n </semantics></math>. We finally obtain analogous results in the context of Lie rings: for every prime <math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> there exists a Lie ring with <math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-torsion in some dimension quotient.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12301","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We establish a bridge between homotopy groups of spheres and commutator calculus in groups, and solve in this manner the “dimension problem” by providing a converse to Sjogren's theorem: every abelian group of bounded exponent can be embedded in the dimension quotient of a group. This is proven by embedding for arbitrary s , d $s,d$ the torsion of the homotopy group π s ( S d ) $\pi _s(S^d)$ into a dimension quotient, via a result of Wu. In particular, this invalidates some long-standing results in the literature, as for every prime p $p$ , there is some p $p$ -torsion in π 2 p ( S 2 ) $\pi _{2p}(S^2)$ by a result of Serre. We explain in this manner Rips's famous counterexample to the dimension conjecture in terms of the homotopy group π 4 ( S 2 ) = Z / 2 Z $\pi _4(S^2)=\mathbb {Z}/2\mathbb {Z}$ . We finally obtain analogous results in the context of Lie rings: for every prime p $p$ there exists a Lie ring with p $p$ -torsion in some dimension quotient.

Abstract Image

分享
查看原文
群与李代数滤波与球的同伦群
我们在球面的同伦群和群中的交换微积分之间建立了一座桥梁,并通过提供一个与Sjogren定理相反的定理来解决“维数问题”:每个有界指数的阿贝尔群都可以嵌入群的维数商中。这是通过将任意s,d$s,d$的同伦群πs(Sd)$\pi_s(s^d)$的扭转嵌入到维数商中来证明的,通过Wu的结果。特别是,这使文献中一些长期存在的结果无效,因为对于每个素数p$p$,由于Serre的结果,π2p(S2)$\pi_{2p}(S^2)$中存在一些p$p$-扭转。我们用这种方式解释了Rips关于维数猜想的著名反例,即同伦群π4(S2)=Z/2Z$\pi_4(s^2)=\mathbb{Z}/2\mathbb{Z}$。我们最后在李环的上下文中得到了类似的结果:对于每个素数p$p$,在某个维数商中存在一个具有p$p$-扭转的李环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信