Extensions of Veech groups I: A hyperbolic action

Pub Date : 2023-05-31 DOI:10.1112/topo.12296
Spencer Dowdall, Matthew G. Durham, Christopher J. Leininger, Alessandro Sisto
{"title":"Extensions of Veech groups I: A hyperbolic action","authors":"Spencer Dowdall,&nbsp;Matthew G. Durham,&nbsp;Christopher J. Leininger,&nbsp;Alessandro Sisto","doi":"10.1112/topo.12296","DOIUrl":null,"url":null,"abstract":"<p>Given a lattice Veech group in the mapping class group of a closed surface <math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>, this paper investigates the geometry of <math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math>, the associated <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mn>1</mn>\n </msub>\n <mi>S</mi>\n </mrow>\n <annotation>$\\pi _1S$</annotation>\n </semantics></math>-extension group. We prove that <math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> is the fundamental group of a bundle with a singular Euclidean-by-hyperbolic geometry. Our main result is that collapsing “obvious” product regions of the universal cover produces an action of <math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> on a hyperbolic space, retaining most of the geometry of <math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math>. This action is a key ingredient in the sequel where we show that <math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> is hierarchically hyperbolic and quasi-isometrically rigid.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12296","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Given a lattice Veech group in the mapping class group of a closed surface S $S$ , this paper investigates the geometry of Γ $\Gamma$ , the associated π 1 S $\pi _1S$ -extension group. We prove that Γ $\Gamma$ is the fundamental group of a bundle with a singular Euclidean-by-hyperbolic geometry. Our main result is that collapsing “obvious” product regions of the universal cover produces an action of Γ $\Gamma$ on a hyperbolic space, retaining most of the geometry of Γ $\Gamma$ . This action is a key ingredient in the sequel where we show that Γ $\Gamma$ is hierarchically hyperbolic and quasi-isometrically rigid.

Abstract Image

分享
查看原文
Veech群I的扩展:一个双曲作用
给定闭曲面S$S$的映射类群中的一个格Veech群,本文研究了Γ$\Gamma$的几何,相关的π1S$\pi_1S$扩展群。我们证明Γ$\Gamma$是具有奇异欧氏双曲几何的丛的基群。我们的主要结果是,折叠泛覆盖的“明显”乘积区域在双曲空间上产生Γ$\Gamma$的作用,保留了Γ$\ Gamma$的大部分几何。这个动作是续集中的一个关键因素,我们在续集中证明了Γ$\Gamma$是分层双曲和准等距刚性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信