Spencer Dowdall, Matthew G. Durham, Christopher J. Leininger, Alessandro Sisto
{"title":"Extensions of Veech groups I: A hyperbolic action","authors":"Spencer Dowdall, Matthew G. Durham, Christopher J. Leininger, Alessandro Sisto","doi":"10.1112/topo.12296","DOIUrl":null,"url":null,"abstract":"<p>Given a lattice Veech group in the mapping class group of a closed surface <math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>, this paper investigates the geometry of <math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math>, the associated <math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mn>1</mn>\n </msub>\n <mi>S</mi>\n </mrow>\n <annotation>$\\pi _1S$</annotation>\n </semantics></math>-extension group. We prove that <math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> is the fundamental group of a bundle with a singular Euclidean-by-hyperbolic geometry. Our main result is that collapsing “obvious” product regions of the universal cover produces an action of <math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> on a hyperbolic space, retaining most of the geometry of <math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math>. This action is a key ingredient in the sequel where we show that <math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> is hierarchically hyperbolic and quasi-isometrically rigid.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12296","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Given a lattice Veech group in the mapping class group of a closed surface , this paper investigates the geometry of , the associated -extension group. We prove that is the fundamental group of a bundle with a singular Euclidean-by-hyperbolic geometry. Our main result is that collapsing “obvious” product regions of the universal cover produces an action of on a hyperbolic space, retaining most of the geometry of . This action is a key ingredient in the sequel where we show that is hierarchically hyperbolic and quasi-isometrically rigid.