Dynamical properties of convex cocompact actions in projective space

Pub Date : 2023-08-02 DOI:10.1112/topo.12307
Theodore Weisman
{"title":"Dynamical properties of convex cocompact actions in projective space","authors":"Theodore Weisman","doi":"10.1112/topo.12307","DOIUrl":null,"url":null,"abstract":"<p>We give a dynamical characterization of convex cocompact group actions on properly convex domains in projective space in the sense of Danciger–Guéritaud–Kassel: we show that convex cocompactness in <math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <msup>\n <mi>P</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$\\mathbb {R}\\mathrm{P}^d$</annotation>\n </semantics></math> is equivalent to an expansion property of the group about its limit set, occurring in different Grassmannians. As an application, we give a sufficient and necessary condition for convex cocompactness for groups that are hyperbolic relative to a collection of convex cocompact subgroups. We show that convex cocompactness in this situation is equivalent to the existence of an equivariant homeomorphism from the Bowditch boundary to the quotient of the limit set of the group by the limit sets of its peripheral subgroups.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We give a dynamical characterization of convex cocompact group actions on properly convex domains in projective space in the sense of Danciger–Guéritaud–Kassel: we show that convex cocompactness in R P d $\mathbb {R}\mathrm{P}^d$ is equivalent to an expansion property of the group about its limit set, occurring in different Grassmannians. As an application, we give a sufficient and necessary condition for convex cocompactness for groups that are hyperbolic relative to a collection of convex cocompact subgroups. We show that convex cocompactness in this situation is equivalent to the existence of an equivariant homeomorphism from the Bowditch boundary to the quotient of the limit set of the group by the limit sets of its peripheral subgroups.

分享
查看原文
射影空间中凸紧作用的动力学性质
在danciger - gusamriaud - kassel意义下,给出了射影空间中适当凸域上凸紧群作用的一个动力学表征:我们证明了RPd$\mathbb {R}\ mathm {P}^d$上的凸紧性等价于群关于其极限集的展开性质,它们发生在不同的Grassmannians上。作为应用,我们给出了相对于凸紧子群集合的双曲型群凸紧性的一个充要条件。证明了这种情况下的凸紧性等价于群的极限集与群的外周子群的极限集之商在Bowditch边界上的等变同胚的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信