Low-dimensional linear representations of mapping class groups

Pub Date : 2023-07-14 DOI:10.1112/topo.12305
Mustafa Korkmaz
{"title":"Low-dimensional linear representations of mapping class groups","authors":"Mustafa Korkmaz","doi":"10.1112/topo.12305","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> be a compact orientable surface of genus <math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> with marked points in the interior. Franks–Handel (<i>Proc. Amer. Math. Soc</i>. <b>141</b> (2013) 2951–2962)  proved that if <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>&lt;</mo>\n <mn>2</mn>\n <mi>g</mi>\n </mrow>\n <annotation>$n&lt;2g$</annotation>\n </semantics></math> then the image of a homomorphism from the mapping class group <math>\n <semantics>\n <mrow>\n <mi>Mod</mi>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Mod}(S)$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> to <math>\n <semantics>\n <mrow>\n <mi>GL</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm GL}(n,{\\mathbb {C}})$</annotation>\n </semantics></math> is trivial if <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$g\\geqslant 3$</annotation>\n </semantics></math> and is finite cyclic if <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$g=2$</annotation>\n </semantics></math>. The first result is our own proof of this fact. Our second main result shows that for <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$g\\geqslant 3$</annotation>\n </semantics></math> up to conjugation there are only two homomorphisms from <math>\n <semantics>\n <mrow>\n <mi>Mod</mi>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Mod}(S)$</annotation>\n </semantics></math> to <math>\n <semantics>\n <mrow>\n <mi>GL</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mi>g</mi>\n <mo>,</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm GL}(2g,{\\mathbb {C}})$</annotation>\n </semantics></math>: the trivial homomorphism and the standard symplectic representation. Our last main result shows that the mapping class group has no faithful linear representation in dimensions less than or equal to <math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mi>g</mi>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$3g-3$</annotation>\n </semantics></math>. We provide many applications of our results, including the finiteness of homomorphisms from mapping class groups of nonorientable surfaces to <math>\n <semantics>\n <mrow>\n <mi>GL</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm GL}(n,{\\mathbb {C}})$</annotation>\n </semantics></math>, the triviality of homomorphisms from the mapping class groups to <math>\n <semantics>\n <mrow>\n <mi>Aut</mi>\n <mo>(</mo>\n <msub>\n <mi>F</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Aut}(F_n)$</annotation>\n </semantics></math> or to <math>\n <semantics>\n <mrow>\n <mi>Out</mi>\n <mo>(</mo>\n <msub>\n <mi>F</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Out}(F_n)$</annotation>\n </semantics></math>, and homomorphisms between mapping class groups. We also show that if the surface <math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> has <math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math> marked point but no boundary components, then <math>\n <semantics>\n <mrow>\n <mi>Mod</mi>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Mod}(S)$</annotation>\n </semantics></math> is generated by involutions if and only if <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$g\\geqslant 3$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>⩽</mo>\n <mn>2</mn>\n <mi>g</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$r\\leqslant 2g-2$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Let S $S$ be a compact orientable surface of genus g $g$ with marked points in the interior. Franks–Handel (Proc. Amer. Math. Soc. 141 (2013) 2951–2962)  proved that if n < 2 g $n<2g$ then the image of a homomorphism from the mapping class group Mod ( S ) ${\rm Mod}(S)$ of S $S$ to GL ( n , C ) ${\rm GL}(n,{\mathbb {C}})$ is trivial if g 3 $g\geqslant 3$ and is finite cyclic if g = 2 $g=2$ . The first result is our own proof of this fact. Our second main result shows that for g 3 $g\geqslant 3$ up to conjugation there are only two homomorphisms from Mod ( S ) ${\rm Mod}(S)$ to GL ( 2 g , C ) ${\rm GL}(2g,{\mathbb {C}})$ : the trivial homomorphism and the standard symplectic representation. Our last main result shows that the mapping class group has no faithful linear representation in dimensions less than or equal to 3 g 3 $3g-3$ . We provide many applications of our results, including the finiteness of homomorphisms from mapping class groups of nonorientable surfaces to GL ( n , C ) ${\rm GL}(n,{\mathbb {C}})$ , the triviality of homomorphisms from the mapping class groups to Aut ( F n ) ${\rm Aut}(F_n)$ or to Out ( F n ) ${\rm Out}(F_n)$ , and homomorphisms between mapping class groups. We also show that if the surface S $S$ has r $r$ marked point but no boundary components, then Mod ( S ) ${\rm Mod}(S)$ is generated by involutions if and only if g 3 $g\geqslant 3$ and r 2 g 2 $r\leqslant 2g-2$ .

分享
查看原文
映射类群的低维线性表示
设S$S$是g$g$亏格的一个紧致可定向曲面,其内部有标记点。Franks–Handel(Proc.Amer.Math.Soc.141(2013)2951–2962)证明了如果n<;2g$n<;2g$则从S$S$的映射类群Mod(S)${\rm-Mod}(n,C)${\rm GL}(n,{\mathbb{C}})$在g⩾3$g\geqslant 3$的情况下是平凡的,并且在g=2$g=2$。第一个结果是我们自己证明了这一事实。我们的第二个主要结果表明,对于g\10878; 3$g\geqslant 3$到共轭,从Mod(S)${\rm-Mod}(S)$只有两个同态到GL(2g,C)${\rm GL}(2g、{\mathbb{C})$:平凡同态和标准辛表示。我们的最后一个主要结果表明,映射类群在小于或等于3 g−3$3g-3$的维度上没有忠实的线性表示。我们提供了我们的结果的许多应用,包括从非定向曲面的类群映射到GL(n,C)${\rm GL}(n,{\mathbb{C}})$的同态的有限性,映射类群到Aut(Fn)$或到Out的同态的平凡性(Fn)${\rm-Out}(F_n)$以及映射类群之间的同态。我们还证明了如果曲面S$S$具有r$r$标记点但没有边界分量,则Mod(S)${\rmMod}r⩽2 g−2$r\leqslant 2g-2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信