The taut polynomial and the Alexander polynomial

Pub Date : 2023-05-30 DOI:10.1112/topo.12302
Anna Parlak
{"title":"The taut polynomial and the Alexander polynomial","authors":"Anna Parlak","doi":"10.1112/topo.12302","DOIUrl":null,"url":null,"abstract":"<p>Landry, Minsky and Taylor defined the taut polynomial of a veering triangulation. Its specialisations generalise the Teichmüller polynomial of a fibred face of the Thurston norm ball. We prove that the taut polynomial of a veering triangulation is equal to a certain twisted Alexander polynomial of the underlying manifold. Thus, the Teichmüller polynomials are just specialisations of twisted Alexander polynomials. We also give formulae relating the taut polynomial and the untwisted Alexander polynomial. There are two formulae, depending on whether the maximal free abelian cover of a veering triangulation is edge-orientable or not. Furthermore, we consider 3-manifolds obtained by Dehn filling a veering triangulation. In this case, we give formulae that relate the specialisation of the taut polynomial under a Dehn filling and the Alexander polynomial of the Dehn-filled manifold. This extends a theorem of McMullen connecting the Teichmüller polynomial and the Alexander polynomial to the non-fibred setting, and improves it in the fibred case. We also prove a sufficient and necessary condition for the existence of an orientable fibred class in the cone over a fibred face of the Thurston norm ball.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12302","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Landry, Minsky and Taylor defined the taut polynomial of a veering triangulation. Its specialisations generalise the Teichmüller polynomial of a fibred face of the Thurston norm ball. We prove that the taut polynomial of a veering triangulation is equal to a certain twisted Alexander polynomial of the underlying manifold. Thus, the Teichmüller polynomials are just specialisations of twisted Alexander polynomials. We also give formulae relating the taut polynomial and the untwisted Alexander polynomial. There are two formulae, depending on whether the maximal free abelian cover of a veering triangulation is edge-orientable or not. Furthermore, we consider 3-manifolds obtained by Dehn filling a veering triangulation. In this case, we give formulae that relate the specialisation of the taut polynomial under a Dehn filling and the Alexander polynomial of the Dehn-filled manifold. This extends a theorem of McMullen connecting the Teichmüller polynomial and the Alexander polynomial to the non-fibred setting, and improves it in the fibred case. We also prove a sufficient and necessary condition for the existence of an orientable fibred class in the cone over a fibred face of the Thurston norm ball.

Abstract Image

分享
查看原文
拉紧多项式与亚历山大多项式
Landry、Minsky和Taylor定义了转向三角测量的拉紧多项式。它的专业化概括了瑟斯顿标准球纤维面的Teichmüller多项式。我们证明了转向三角剖分的拉紧多项式等于下面流形的某个扭曲的亚历山大多项式。因此,Teichmüller多项式只是扭曲亚历山大多项式的专门化。我们还给出了拉紧多项式和无扭亚历山大多项式的相关公式。根据转向三角测量的最大自由阿贝尔覆盖是否可边定向,有两个公式。此外,我们还考虑了通过Dehn填充转向三角测量得到的3个流形。在这种情况下,我们给出了在Dehn填充下拉紧多项式的专业化和Dehn填充流形的Alexander多项式的相关公式。这扩展了McMullen将Teichmüller多项式和Alexander多项式连接到非纤维设置的定理,并在纤维情况下对其进行了改进。我们还证明了瑟斯顿标准球纤维面上圆锥中存在可定向纤维类的一个充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信