{"title":"映射类群的低维线性表示","authors":"Mustafa Korkmaz","doi":"10.1112/topo.12305","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> be a compact orientable surface of genus <math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> with marked points in the interior. Franks–Handel (<i>Proc. Amer. Math. Soc</i>. <b>141</b> (2013) 2951–2962) proved that if <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo><</mo>\n <mn>2</mn>\n <mi>g</mi>\n </mrow>\n <annotation>$n<2g$</annotation>\n </semantics></math> then the image of a homomorphism from the mapping class group <math>\n <semantics>\n <mrow>\n <mi>Mod</mi>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Mod}(S)$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> to <math>\n <semantics>\n <mrow>\n <mi>GL</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm GL}(n,{\\mathbb {C}})$</annotation>\n </semantics></math> is trivial if <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$g\\geqslant 3$</annotation>\n </semantics></math> and is finite cyclic if <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$g=2$</annotation>\n </semantics></math>. The first result is our own proof of this fact. Our second main result shows that for <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$g\\geqslant 3$</annotation>\n </semantics></math> up to conjugation there are only two homomorphisms from <math>\n <semantics>\n <mrow>\n <mi>Mod</mi>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Mod}(S)$</annotation>\n </semantics></math> to <math>\n <semantics>\n <mrow>\n <mi>GL</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mi>g</mi>\n <mo>,</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm GL}(2g,{\\mathbb {C}})$</annotation>\n </semantics></math>: the trivial homomorphism and the standard symplectic representation. Our last main result shows that the mapping class group has no faithful linear representation in dimensions less than or equal to <math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mi>g</mi>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$3g-3$</annotation>\n </semantics></math>. We provide many applications of our results, including the finiteness of homomorphisms from mapping class groups of nonorientable surfaces to <math>\n <semantics>\n <mrow>\n <mi>GL</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm GL}(n,{\\mathbb {C}})$</annotation>\n </semantics></math>, the triviality of homomorphisms from the mapping class groups to <math>\n <semantics>\n <mrow>\n <mi>Aut</mi>\n <mo>(</mo>\n <msub>\n <mi>F</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Aut}(F_n)$</annotation>\n </semantics></math> or to <math>\n <semantics>\n <mrow>\n <mi>Out</mi>\n <mo>(</mo>\n <msub>\n <mi>F</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Out}(F_n)$</annotation>\n </semantics></math>, and homomorphisms between mapping class groups. We also show that if the surface <math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> has <math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math> marked point but no boundary components, then <math>\n <semantics>\n <mrow>\n <mi>Mod</mi>\n <mo>(</mo>\n <mi>S</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\rm Mod}(S)$</annotation>\n </semantics></math> is generated by involutions if and only if <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$g\\geqslant 3$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>⩽</mo>\n <mn>2</mn>\n <mi>g</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$r\\leqslant 2g-2$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Low-dimensional linear representations of mapping class groups\",\"authors\":\"Mustafa Korkmaz\",\"doi\":\"10.1112/topo.12305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> be a compact orientable surface of genus <math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> with marked points in the interior. Franks–Handel (<i>Proc. Amer. Math. Soc</i>. <b>141</b> (2013) 2951–2962) proved that if <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo><</mo>\\n <mn>2</mn>\\n <mi>g</mi>\\n </mrow>\\n <annotation>$n<2g$</annotation>\\n </semantics></math> then the image of a homomorphism from the mapping class group <math>\\n <semantics>\\n <mrow>\\n <mi>Mod</mi>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Mod}(S)$</annotation>\\n </semantics></math> of <math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> to <math>\\n <semantics>\\n <mrow>\\n <mi>GL</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>C</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm GL}(n,{\\\\mathbb {C}})$</annotation>\\n </semantics></math> is trivial if <math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$g\\\\geqslant 3$</annotation>\\n </semantics></math> and is finite cyclic if <math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$g=2$</annotation>\\n </semantics></math>. The first result is our own proof of this fact. Our second main result shows that for <math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$g\\\\geqslant 3$</annotation>\\n </semantics></math> up to conjugation there are only two homomorphisms from <math>\\n <semantics>\\n <mrow>\\n <mi>Mod</mi>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Mod}(S)$</annotation>\\n </semantics></math> to <math>\\n <semantics>\\n <mrow>\\n <mi>GL</mi>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mi>C</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm GL}(2g,{\\\\mathbb {C}})$</annotation>\\n </semantics></math>: the trivial homomorphism and the standard symplectic representation. Our last main result shows that the mapping class group has no faithful linear representation in dimensions less than or equal to <math>\\n <semantics>\\n <mrow>\\n <mn>3</mn>\\n <mi>g</mi>\\n <mo>−</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$3g-3$</annotation>\\n </semantics></math>. We provide many applications of our results, including the finiteness of homomorphisms from mapping class groups of nonorientable surfaces to <math>\\n <semantics>\\n <mrow>\\n <mi>GL</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>C</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm GL}(n,{\\\\mathbb {C}})$</annotation>\\n </semantics></math>, the triviality of homomorphisms from the mapping class groups to <math>\\n <semantics>\\n <mrow>\\n <mi>Aut</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>F</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Aut}(F_n)$</annotation>\\n </semantics></math> or to <math>\\n <semantics>\\n <mrow>\\n <mi>Out</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>F</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Out}(F_n)$</annotation>\\n </semantics></math>, and homomorphisms between mapping class groups. We also show that if the surface <math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> has <math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math> marked point but no boundary components, then <math>\\n <semantics>\\n <mrow>\\n <mi>Mod</mi>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\rm Mod}(S)$</annotation>\\n </semantics></math> is generated by involutions if and only if <math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$g\\\\geqslant 3$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>⩽</mo>\\n <mn>2</mn>\\n <mi>g</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$r\\\\leqslant 2g-2$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-dimensional linear representations of mapping class groups
Let be a compact orientable surface of genus with marked points in the interior. Franks–Handel (Proc. Amer. Math. Soc. 141 (2013) 2951–2962) proved that if then the image of a homomorphism from the mapping class group of to is trivial if and is finite cyclic if . The first result is our own proof of this fact. Our second main result shows that for up to conjugation there are only two homomorphisms from to : the trivial homomorphism and the standard symplectic representation. Our last main result shows that the mapping class group has no faithful linear representation in dimensions less than or equal to . We provide many applications of our results, including the finiteness of homomorphisms from mapping class groups of nonorientable surfaces to , the triviality of homomorphisms from the mapping class groups to or to , and homomorphisms between mapping class groups. We also show that if the surface has marked point but no boundary components, then is generated by involutions if and only if and .