具有规定分支数据的曲面上复杂投影结构的完整性

IF 0.8 2区 数学 Q2 MATHEMATICS
Thomas Le Fils
{"title":"具有规定分支数据的曲面上复杂投影结构的完整性","authors":"Thomas Le Fils","doi":"10.1112/topo.12287","DOIUrl":null,"url":null,"abstract":"<p>We characterize the representations of the fundamental group of a closed surface to <math>\n <semantics>\n <mrow>\n <msub>\n <mi>PSL</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{PSL}_2(\\mathbb {C})$</annotation>\n </semantics></math> that arise as the holonomy of a branched complex projective structure with fixed branch divisor. In particular, we compute the holonomies of the spherical metrics with prescribed integral conical angles and the holonomies of affine structures with fixed conical angles on closed surfaces.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 1","pages":"430-487"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12287","citationCount":"0","resultStr":"{\"title\":\"Holonomy of complex projective structures on surfaces with prescribed branch data\",\"authors\":\"Thomas Le Fils\",\"doi\":\"10.1112/topo.12287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We characterize the representations of the fundamental group of a closed surface to <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>PSL</mi>\\n <mn>2</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>C</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathrm{PSL}_2(\\\\mathbb {C})$</annotation>\\n </semantics></math> that arise as the holonomy of a branched complex projective structure with fixed branch divisor. In particular, we compute the holonomies of the spherical metrics with prescribed integral conical angles and the holonomies of affine structures with fixed conical angles on closed surfaces.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"16 1\",\"pages\":\"430-487\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12287\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12287\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12287","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将一个闭曲面的基群的表示刻画为具有固定分支除数的支复射影结构的完整集PSL2(C)$\ mathm {PSL}_2(\mathbb {C})$。特别地,我们计算了具有规定积分圆锥角的球面度量的完整分类和具有固定圆锥角的仿射结构在封闭表面上的完整分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Holonomy of complex projective structures on surfaces with prescribed branch data

Holonomy of complex projective structures on surfaces with prescribed branch data

We characterize the representations of the fundamental group of a closed surface to PSL 2 ( C ) $\mathrm{PSL}_2(\mathbb {C})$ that arise as the holonomy of a branched complex projective structure with fixed branch divisor. In particular, we compute the holonomies of the spherical metrics with prescribed integral conical angles and the holonomies of affine structures with fixed conical angles on closed surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信