{"title":"环面整数同调三球具有不可约SU(2)$SU(2)$‐表示","authors":"Tye Lidman, Juanita Pinzón-Caicedo, Raphael Zentner","doi":"10.1112/topo.12275","DOIUrl":null,"url":null,"abstract":"<p>We prove that if an integer homology three-sphere contains an embedded incompressible torus, then its fundamental group admits irreducible <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mi>U</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$SU(2)$</annotation>\n </semantics></math>-representations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12275","citationCount":"1","resultStr":"{\"title\":\"Toroidal integer homology three-spheres have irreducible \\n \\n \\n S\\n U\\n (\\n 2\\n )\\n \\n $SU(2)$\\n -representations\",\"authors\":\"Tye Lidman, Juanita Pinzón-Caicedo, Raphael Zentner\",\"doi\":\"10.1112/topo.12275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that if an integer homology three-sphere contains an embedded incompressible torus, then its fundamental group admits irreducible <math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mi>U</mi>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$SU(2)$</annotation>\\n </semantics></math>-representations.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.12275\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toroidal integer homology three-spheres have irreducible
S
U
(
2
)
$SU(2)$
-representations
We prove that if an integer homology three-sphere contains an embedded incompressible torus, then its fundamental group admits irreducible -representations.