Simplicial descent for Chekanov–Eliashberg dg-algebras

IF 0.8 2区 数学 Q2 MATHEMATICS
Johan Asplund
{"title":"Simplicial descent for Chekanov–Eliashberg dg-algebras","authors":"Johan Asplund","doi":"10.1112/topo.12289","DOIUrl":null,"url":null,"abstract":"<p>We introduce a type of surgery decomposition of Weinstein manifolds that we call <i>simplicial decompositions</i>. The main result of this paper is that the Chekanov–Eliashberg dg-algebra of the attaching spheres of a Weinstein manifold satisfies a descent (cosheaf) property with respect to a simplicial decomposition. Simplicial decompositions generalize the notion of Weinstein connected sum and we show that there is a one-to-one correspondence (up to Weinstein homotopy) between simplicial decompositions and so-called good sectorial covers. As an application, we explicitly compute the Chekanov–Eliashberg dg-algebra of the Legendrian attaching spheres of a plumbing of copies of cotangent bundles of spheres of dimension at least three according to any plumbing quiver. We show by explicit computation that this Chekanov–Eliashberg dg-algebra is quasi-isomorphic to the Ginzburg dg-algebra of the plumbing quiver.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"16 2","pages":"489-541"},"PeriodicalIF":0.8000,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12289","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

We introduce a type of surgery decomposition of Weinstein manifolds that we call simplicial decompositions. The main result of this paper is that the Chekanov–Eliashberg dg-algebra of the attaching spheres of a Weinstein manifold satisfies a descent (cosheaf) property with respect to a simplicial decomposition. Simplicial decompositions generalize the notion of Weinstein connected sum and we show that there is a one-to-one correspondence (up to Weinstein homotopy) between simplicial decompositions and so-called good sectorial covers. As an application, we explicitly compute the Chekanov–Eliashberg dg-algebra of the Legendrian attaching spheres of a plumbing of copies of cotangent bundles of spheres of dimension at least three according to any plumbing quiver. We show by explicit computation that this Chekanov–Eliashberg dg-algebra is quasi-isomorphic to the Ginzburg dg-algebra of the plumbing quiver.

Chekanov-Eliashberg代数的简化下降
我们引入韦恩斯坦流形的一种手术分解,我们称之为简单分解。本文的主要结果是关于Weinstein流形的附球的Chekanov-Eliashberg dg -代数满足关于简单分解的下降(共轴)性质。简单分解推广了Weinstein连通和的概念,我们证明了简单分解与所谓的良好扇区覆盖之间存在一对一的对应关系(直到Weinstein同伦)。作为一个应用,我们明确地计算了至少三维球面的余切束副本的管道的Legendrian附球的Chekanov-Eliashberg dg -代数。我们通过显式计算证明了该Chekanov-Eliashberg dg -代数与管道颤振的Ginzburg dg -代数是拟同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信