还原代数群的A1${\mathbb{A}}^1$连通分量的强A1${

Pub Date : 2023-05-27 DOI:10.1112/topo.12298
Chetan Balwe, Amit Hogadi, Anand Sawant
{"title":"还原代数群的A1${\\mathbb{A}}^1$连通分量的强A1${","authors":"Chetan Balwe,&nbsp;Amit Hogadi,&nbsp;Anand Sawant","doi":"10.1112/topo.12298","DOIUrl":null,"url":null,"abstract":"<p>We show that the sheaf of <math>\n <semantics>\n <msup>\n <mi>A</mi>\n <mn>1</mn>\n </msup>\n <annotation>${\\mathbb {A}}^1$</annotation>\n </semantics></math>-connected components of a reductive algebraic group over a perfect field is strongly <math>\n <semantics>\n <msup>\n <mi>A</mi>\n <mn>1</mn>\n </msup>\n <annotation>${\\mathbb {A}}^1$</annotation>\n </semantics></math>-invariant. As a consequence, torsors under such groups give rise to <math>\n <semantics>\n <msup>\n <mi>A</mi>\n <mn>1</mn>\n </msup>\n <annotation>${\\mathbb {A}}^1$</annotation>\n </semantics></math>-fiber sequences. We also show that sections of <math>\n <semantics>\n <msup>\n <mi>A</mi>\n <mn>1</mn>\n </msup>\n <annotation>${\\mathbb {A}}^1$</annotation>\n </semantics></math>-connected components of anisotropic, semisimple, simply connected algebraic groups over an arbitrary field agree with their <math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>-equivalence classes, thereby removing the perfectness assumption in the previously known results about the characterization of isotropy in terms of affine homotopy invariance of Nisnevich locally trivial torsors.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong \\n \\n \\n A\\n 1\\n \\n ${\\\\mathbb {A}}^1$\\n -invariance of \\n \\n \\n A\\n 1\\n \\n ${\\\\mathbb {A}}^1$\\n -connected components of reductive algebraic groups\",\"authors\":\"Chetan Balwe,&nbsp;Amit Hogadi,&nbsp;Anand Sawant\",\"doi\":\"10.1112/topo.12298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that the sheaf of <math>\\n <semantics>\\n <msup>\\n <mi>A</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>${\\\\mathbb {A}}^1$</annotation>\\n </semantics></math>-connected components of a reductive algebraic group over a perfect field is strongly <math>\\n <semantics>\\n <msup>\\n <mi>A</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>${\\\\mathbb {A}}^1$</annotation>\\n </semantics></math>-invariant. As a consequence, torsors under such groups give rise to <math>\\n <semantics>\\n <msup>\\n <mi>A</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>${\\\\mathbb {A}}^1$</annotation>\\n </semantics></math>-fiber sequences. We also show that sections of <math>\\n <semantics>\\n <msup>\\n <mi>A</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>${\\\\mathbb {A}}^1$</annotation>\\n </semantics></math>-connected components of anisotropic, semisimple, simply connected algebraic groups over an arbitrary field agree with their <math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math>-equivalence classes, thereby removing the perfectness assumption in the previously known results about the characterization of isotropy in terms of affine homotopy invariance of Nisnevich locally trivial torsors.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了完美域上的归约代数群的A1${\mathbb{A}}^1$连通分量的sheaf是强A1${。因此,这类群下的扭转子产生A1${\mathbb{a}}^1$纤维序列。我们还证明了任意域上各向异性、半单、单连通代数群的A1${\mathbb{A}}^1$连通分量的截面与它们的R$R$等价类一致,从而消除了先前已知的关于用Nisnevich局部平凡扭体的仿射同伦不变性表征各向同性的结果中的完全性假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Strong A 1 ${\mathbb {A}}^1$ -invariance of A 1 ${\mathbb {A}}^1$ -connected components of reductive algebraic groups

We show that the sheaf of A 1 ${\mathbb {A}}^1$ -connected components of a reductive algebraic group over a perfect field is strongly A 1 ${\mathbb {A}}^1$ -invariant. As a consequence, torsors under such groups give rise to A 1 ${\mathbb {A}}^1$ -fiber sequences. We also show that sections of A 1 ${\mathbb {A}}^1$ -connected components of anisotropic, semisimple, simply connected algebraic groups over an arbitrary field agree with their R $R$ -equivalence classes, thereby removing the perfectness assumption in the previously known results about the characterization of isotropy in terms of affine homotopy invariance of Nisnevich locally trivial torsors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信