增广和浸入式拉格朗日填充

Pub Date : 2023-02-28 DOI:10.1112/topo.12280
Yu Pan, Dan Rutherford
{"title":"增广和浸入式拉格朗日填充","authors":"Yu Pan,&nbsp;Dan Rutherford","doi":"10.1112/topo.12280","DOIUrl":null,"url":null,"abstract":"<p>For a Legendrian link <math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n <mo>⊂</mo>\n <msup>\n <mi>J</mi>\n <mn>1</mn>\n </msup>\n <mi>M</mi>\n </mrow>\n <annotation>$\\Lambda \\subset J^1M$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>=</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$M = \\mathbb {R}$</annotation>\n </semantics></math> or <math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>$S^1$</annotation>\n </semantics></math>, immersed exact Lagrangian fillings <math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>⊂</mo>\n <mtext>Symp</mtext>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>J</mi>\n <mn>1</mn>\n </msup>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n <mo>≅</mo>\n <msup>\n <mi>T</mi>\n <mo>∗</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>R</mi>\n <mrow>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>×</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L \\subset \\mbox{Symp}(J^1M) \\cong T^*(\\mathbb {R}_{&gt;0} \\times M)$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> can be lifted to conical Legendrian fillings <math>\n <semantics>\n <mrow>\n <mi>Σ</mi>\n <mo>⊂</mo>\n <msup>\n <mi>J</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>R</mi>\n <mrow>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>×</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Sigma \\subset J^1(\\mathbb {R}_{&gt;0} \\times M)$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math>. When <math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> is embedded, using the version of functoriality for Legendrian contact homology (LCH) from Pan and Rutherford [J. Symplectic Geom. <b>19</b> (2021), no. 3, 635–722], for each augmentation <math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>:</mo>\n <mi>A</mi>\n <mo>(</mo>\n <mi>Σ</mi>\n <mo>)</mo>\n <mo>→</mo>\n <mi>Z</mi>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\alpha : \\mathcal {A}(\\Sigma ) \\rightarrow \\mathbb {Z}/2$</annotation>\n </semantics></math> of the LCH algebra of <math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math>, there is an induced augmentation <math>\n <semantics>\n <mrow>\n <msub>\n <mi>ε</mi>\n <mrow>\n <mo>(</mo>\n <mi>Σ</mi>\n <mo>,</mo>\n <mi>α</mi>\n <mo>)</mo>\n </mrow>\n </msub>\n <mo>:</mo>\n <mi>A</mi>\n <mrow>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mi>Z</mi>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\epsilon _{(\\Sigma ,\\alpha )}: \\mathcal {A}(\\Lambda ) \\rightarrow \\mathbb {Z}/2$</annotation>\n </semantics></math>. With <math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> fixed, the set of homotopy classes of all such induced augmentations, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>I</mi>\n <mi>Σ</mi>\n </msub>\n <mo>⊂</mo>\n <mi>Aug</mi>\n <mrow>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <mo>∼</mo>\n </mrow>\n <annotation>$I_\\Sigma \\subset \\mathit {Aug}(\\Lambda )/{\\sim }$</annotation>\n </semantics></math>, is a Legendrian isotopy invariant of <math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math>. We establish methods to compute <math>\n <semantics>\n <msub>\n <mi>I</mi>\n <mi>Σ</mi>\n </msub>\n <annotation>$I_\\Sigma$</annotation>\n </semantics></math> based on the correspondence between MCFs and augmentations. This includes developing a functoriality for the cellular differential graded algebra from Rutherford and Sullivan [Adv. Math. <b>374</b> (2020), 107348, 71 pp.] with respect to Legendrian cobordisms, and proving its equivalence to the functoriality for LCH. For arbitrary <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n \\geqslant 1$</annotation>\n </semantics></math>, we give examples of Legendrian torus knots with <math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n <annotation>$2n$</annotation>\n </semantics></math> distinct conical Legendrian fillings distinguished by their induced augmentation sets. We prove that when <math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n <mo>≠</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\rho \\ne 1$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n <mo>⊂</mo>\n <msup>\n <mi>J</mi>\n <mn>1</mn>\n </msup>\n <mi>R</mi>\n </mrow>\n <annotation>$\\Lambda \\subset J^1\\mathbb {R}$</annotation>\n </semantics></math>, <i>every</i> <math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math>-graded augmentation of <math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> can be induced in this manner by an immersed Lagrangian filling. Alternatively, this is viewed as a computation of cobordism classes for an appropriate notion of <math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math>-graded augmented Legendrian cobordism.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Augmentations and immersed Lagrangian fillings\",\"authors\":\"Yu Pan,&nbsp;Dan Rutherford\",\"doi\":\"10.1112/topo.12280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a Legendrian link <math>\\n <semantics>\\n <mrow>\\n <mi>Λ</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>J</mi>\\n <mn>1</mn>\\n </msup>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$\\\\Lambda \\\\subset J^1M$</annotation>\\n </semantics></math> with <math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mo>=</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$M = \\\\mathbb {R}$</annotation>\\n </semantics></math> or <math>\\n <semantics>\\n <msup>\\n <mi>S</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>$S^1$</annotation>\\n </semantics></math>, immersed exact Lagrangian fillings <math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mo>⊂</mo>\\n <mtext>Symp</mtext>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>J</mi>\\n <mn>1</mn>\\n </msup>\\n <mi>M</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>≅</mo>\\n <msup>\\n <mi>T</mi>\\n <mo>∗</mo>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>×</mo>\\n <mi>M</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L \\\\subset \\\\mbox{Symp}(J^1M) \\\\cong T^*(\\\\mathbb {R}_{&gt;0} \\\\times M)$</annotation>\\n </semantics></math> of <math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> can be lifted to conical Legendrian fillings <math>\\n <semantics>\\n <mrow>\\n <mi>Σ</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>J</mi>\\n <mn>1</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>R</mi>\\n <mrow>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>×</mo>\\n <mi>M</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Sigma \\\\subset J^1(\\\\mathbb {R}_{&gt;0} \\\\times M)$</annotation>\\n </semantics></math> of <math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math>. When <math>\\n <semantics>\\n <mi>Σ</mi>\\n <annotation>$\\\\Sigma$</annotation>\\n </semantics></math> is embedded, using the version of functoriality for Legendrian contact homology (LCH) from Pan and Rutherford [J. Symplectic Geom. <b>19</b> (2021), no. 3, 635–722], for each augmentation <math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>:</mo>\\n <mi>A</mi>\\n <mo>(</mo>\\n <mi>Σ</mi>\\n <mo>)</mo>\\n <mo>→</mo>\\n <mi>Z</mi>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$\\\\alpha : \\\\mathcal {A}(\\\\Sigma ) \\\\rightarrow \\\\mathbb {Z}/2$</annotation>\\n </semantics></math> of the LCH algebra of <math>\\n <semantics>\\n <mi>Σ</mi>\\n <annotation>$\\\\Sigma$</annotation>\\n </semantics></math>, there is an induced augmentation <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ε</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>Σ</mi>\\n <mo>,</mo>\\n <mi>α</mi>\\n <mo>)</mo>\\n </mrow>\\n </msub>\\n <mo>:</mo>\\n <mi>A</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>Λ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>→</mo>\\n <mi>Z</mi>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$\\\\epsilon _{(\\\\Sigma ,\\\\alpha )}: \\\\mathcal {A}(\\\\Lambda ) \\\\rightarrow \\\\mathbb {Z}/2$</annotation>\\n </semantics></math>. With <math>\\n <semantics>\\n <mi>Σ</mi>\\n <annotation>$\\\\Sigma$</annotation>\\n </semantics></math> fixed, the set of homotopy classes of all such induced augmentations, <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>I</mi>\\n <mi>Σ</mi>\\n </msub>\\n <mo>⊂</mo>\\n <mi>Aug</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>Λ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>/</mo>\\n <mo>∼</mo>\\n </mrow>\\n <annotation>$I_\\\\Sigma \\\\subset \\\\mathit {Aug}(\\\\Lambda )/{\\\\sim }$</annotation>\\n </semantics></math>, is a Legendrian isotopy invariant of <math>\\n <semantics>\\n <mi>Σ</mi>\\n <annotation>$\\\\Sigma$</annotation>\\n </semantics></math>. We establish methods to compute <math>\\n <semantics>\\n <msub>\\n <mi>I</mi>\\n <mi>Σ</mi>\\n </msub>\\n <annotation>$I_\\\\Sigma$</annotation>\\n </semantics></math> based on the correspondence between MCFs and augmentations. This includes developing a functoriality for the cellular differential graded algebra from Rutherford and Sullivan [Adv. Math. <b>374</b> (2020), 107348, 71 pp.] with respect to Legendrian cobordisms, and proving its equivalence to the functoriality for LCH. For arbitrary <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$n \\\\geqslant 1$</annotation>\\n </semantics></math>, we give examples of Legendrian torus knots with <math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$2n$</annotation>\\n </semantics></math> distinct conical Legendrian fillings distinguished by their induced augmentation sets. We prove that when <math>\\n <semantics>\\n <mrow>\\n <mi>ρ</mi>\\n <mo>≠</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\rho \\\\ne 1$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mi>Λ</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>J</mi>\\n <mn>1</mn>\\n </msup>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$\\\\Lambda \\\\subset J^1\\\\mathbb {R}$</annotation>\\n </semantics></math>, <i>every</i> <math>\\n <semantics>\\n <mi>ρ</mi>\\n <annotation>$\\\\rho$</annotation>\\n </semantics></math>-graded augmentation of <math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> can be induced in this manner by an immersed Lagrangian filling. Alternatively, this is viewed as a computation of cobordism classes for an appropriate notion of <math>\\n <semantics>\\n <mi>ρ</mi>\\n <annotation>$\\\\rho$</annotation>\\n </semantics></math>-graded augmented Legendrian cobordism.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

对于具有M=R$M=\mathbb{R}$或S1$S^1$的Legendarian链接∧⊂J1M$\Lambda\subet J^1M$,浸入精确拉格朗日填充L⊆Symp(J1M)ŞT*(R>0×M)$L\subet \mbox{Symp}(J^1M)\cong T^*(\mathbb{R}_∧$\Lambda$的{>0}\times M)$可以提升到圆锥形Legendarian填充物∑⊂J1(R>0×M)$\Sigma\subset J^1(\mathbb{R}_{>0}\times M)$的∧$\Lambda$。当∑$\Sigma$被嵌入时,使用Pan和Rutherford的Legendarian接触同调(LCH)的函数性版本[J.Symptic Geom.19(2021),no.3635–722],对于每个扩充α:A(∑)→Z/2$\alpha:\mathcal{A}(\Sigma)\rightarrow\mathbb{Z}/2$的∑$\Sigma$的LCH代数,存在诱导增广ε(∑,α):A(∧)→Z/2$\epsilon\{(\Sigma,\alpha)}:\mathcal{A}(\Lambda)\rightarrow\mathbb{Z}/2$。在∑$\Sigma$固定的情况下,所有这些诱导增广的一组同伦类,I∑⊂Aug(∧)/~$I_\Sigma\subset\mathit{Aug}(\Lambda)/{\sim}$,是∑$\ Sigma$的Legendarian同位不变量。我们建立了基于MCF和增广之间的对应关系来计算I∑$I_\Sigma$的方法。这包括从Rutherford和Sullivan[Adv.Math.374(2020),107348,71 pp.]关于Legendarian共基为单元微分分级代数发展一个函数性,并证明其等价于LCH的函数性。对于任意的n⩾1$n\geqslant 1$,我们给出了具有2n$2n$不同锥形勒让德填充物的勒让德环面节点的例子,这些勒让德环形节点通过它们的诱导增广集来区分。我们证明了当ρ≠1$\rho\ne 1$和∧⊂J1R$\Lambda\subet J^1\mathb{R}$时,∧$\Lambda的每一个ρ$\rho$分级增广都可以通过浸入拉格朗日填充以这种方式诱导。或者,这被视为ρ$\rho$分级增广勒让德协序的适当概念的协序类的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Augmentations and immersed Lagrangian fillings

For a Legendrian link Λ J 1 M $\Lambda \subset J^1M$ with M = R $M = \mathbb {R}$ or S 1 $S^1$ , immersed exact Lagrangian fillings L Symp ( J 1 M ) T ( R > 0 × M ) $L \subset \mbox{Symp}(J^1M) \cong T^*(\mathbb {R}_{>0} \times M)$ of Λ $\Lambda$ can be lifted to conical Legendrian fillings Σ J 1 ( R > 0 × M ) $\Sigma \subset J^1(\mathbb {R}_{>0} \times M)$ of Λ $\Lambda$ . When Σ $\Sigma$ is embedded, using the version of functoriality for Legendrian contact homology (LCH) from Pan and Rutherford [J. Symplectic Geom. 19 (2021), no. 3, 635–722], for each augmentation α : A ( Σ ) Z / 2 $\alpha : \mathcal {A}(\Sigma ) \rightarrow \mathbb {Z}/2$ of the LCH algebra of Σ $\Sigma$ , there is an induced augmentation ε ( Σ , α ) : A ( Λ ) Z / 2 $\epsilon _{(\Sigma ,\alpha )}: \mathcal {A}(\Lambda ) \rightarrow \mathbb {Z}/2$ . With Σ $\Sigma$ fixed, the set of homotopy classes of all such induced augmentations, I Σ Aug ( Λ ) / $I_\Sigma \subset \mathit {Aug}(\Lambda )/{\sim }$ , is a Legendrian isotopy invariant of Σ $\Sigma$ . We establish methods to compute I Σ $I_\Sigma$ based on the correspondence between MCFs and augmentations. This includes developing a functoriality for the cellular differential graded algebra from Rutherford and Sullivan [Adv. Math. 374 (2020), 107348, 71 pp.] with respect to Legendrian cobordisms, and proving its equivalence to the functoriality for LCH. For arbitrary n 1 $n \geqslant 1$ , we give examples of Legendrian torus knots with 2 n $2n$ distinct conical Legendrian fillings distinguished by their induced augmentation sets. We prove that when ρ 1 $\rho \ne 1$ and Λ J 1 R $\Lambda \subset J^1\mathbb {R}$ , every ρ $\rho$ -graded augmentation of Λ $\Lambda$ can be induced in this manner by an immersed Lagrangian filling. Alternatively, this is viewed as a computation of cobordism classes for an appropriate notion of ρ $\rho$ -graded augmented Legendrian cobordism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信