{"title":"Z $\\mathcal {Z}$ -因子图的有界投影","authors":"Matt Clay, Caglar Uyanik","doi":"10.1112/topo.70024","DOIUrl":null,"url":null,"abstract":"<p>Suppose that <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is a free product <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>=</mo>\n <msub>\n <mi>A</mi>\n <mn>1</mn>\n </msub>\n <mo>∗</mo>\n <msub>\n <mi>A</mi>\n <mn>2</mn>\n </msub>\n <mo>∗</mo>\n <mi>⋯</mi>\n <mo>∗</mo>\n <msub>\n <mi>A</mi>\n <mi>k</mi>\n </msub>\n <mo>∗</mo>\n <msub>\n <mi>F</mi>\n <mi>N</mi>\n </msub>\n </mrow>\n <annotation>$G = A_1 * A_2* \\cdots * A_k * F_N$</annotation>\n </semantics></math>, where each of the groups <span></span><math>\n <semantics>\n <msub>\n <mi>A</mi>\n <mi>i</mi>\n </msub>\n <annotation>$A_i$</annotation>\n </semantics></math> is torsion-free and <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>N</mi>\n </msub>\n <annotation>$F_N$</annotation>\n </semantics></math> is a free group of rank <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mi>O</mi>\n <annotation>$\\mathcal {O}$</annotation>\n </semantics></math> be the deformation space associated to this free product decomposition. We show that the diameter of the projection of the subset of <span></span><math>\n <semantics>\n <mi>O</mi>\n <annotation>$\\mathcal {O}$</annotation>\n </semantics></math> where a given element has bounded length to the <span></span><math>\n <semantics>\n <mi>Z</mi>\n <annotation>$\\mathcal {Z}$</annotation>\n </semantics></math>-factor graph is bounded, where the diameter bound depends only on the length bound. This relies on an analysis of the boundary of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> as a hyperbolic group relative to the collection of subgroups <span></span><math>\n <semantics>\n <msub>\n <mi>A</mi>\n <mi>i</mi>\n </msub>\n <annotation>$A_i$</annotation>\n </semantics></math> together with a given nonperipheral cyclic subgroup. The main theorem is new even in the case that <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>=</mo>\n <msub>\n <mi>F</mi>\n <mi>N</mi>\n </msub>\n </mrow>\n <annotation>$G = F_N$</annotation>\n </semantics></math>, in which case <span></span><math>\n <semantics>\n <mi>O</mi>\n <annotation>$\\mathcal {O}$</annotation>\n </semantics></math> is the Culler–Vogtmann outer space. In a future paper, we will apply this theorem to study the geometry of free group extensions.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70024","citationCount":"0","resultStr":"{\"title\":\"Bounded projections to the \\n \\n Z\\n $\\\\mathcal {Z}$\\n -factor graph\",\"authors\":\"Matt Clay, Caglar Uyanik\",\"doi\":\"10.1112/topo.70024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suppose that <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> is a free product <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>A</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>∗</mo>\\n <msub>\\n <mi>A</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>∗</mo>\\n <mi>⋯</mi>\\n <mo>∗</mo>\\n <msub>\\n <mi>A</mi>\\n <mi>k</mi>\\n </msub>\\n <mo>∗</mo>\\n <msub>\\n <mi>F</mi>\\n <mi>N</mi>\\n </msub>\\n </mrow>\\n <annotation>$G = A_1 * A_2* \\\\cdots * A_k * F_N$</annotation>\\n </semantics></math>, where each of the groups <span></span><math>\\n <semantics>\\n <msub>\\n <mi>A</mi>\\n <mi>i</mi>\\n </msub>\\n <annotation>$A_i$</annotation>\\n </semantics></math> is torsion-free and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>F</mi>\\n <mi>N</mi>\\n </msub>\\n <annotation>$F_N$</annotation>\\n </semantics></math> is a free group of rank <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math>. Let <span></span><math>\\n <semantics>\\n <mi>O</mi>\\n <annotation>$\\\\mathcal {O}$</annotation>\\n </semantics></math> be the deformation space associated to this free product decomposition. We show that the diameter of the projection of the subset of <span></span><math>\\n <semantics>\\n <mi>O</mi>\\n <annotation>$\\\\mathcal {O}$</annotation>\\n </semantics></math> where a given element has bounded length to the <span></span><math>\\n <semantics>\\n <mi>Z</mi>\\n <annotation>$\\\\mathcal {Z}$</annotation>\\n </semantics></math>-factor graph is bounded, where the diameter bound depends only on the length bound. This relies on an analysis of the boundary of <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> as a hyperbolic group relative to the collection of subgroups <span></span><math>\\n <semantics>\\n <msub>\\n <mi>A</mi>\\n <mi>i</mi>\\n </msub>\\n <annotation>$A_i$</annotation>\\n </semantics></math> together with a given nonperipheral cyclic subgroup. The main theorem is new even in the case that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>F</mi>\\n <mi>N</mi>\\n </msub>\\n </mrow>\\n <annotation>$G = F_N$</annotation>\\n </semantics></math>, in which case <span></span><math>\\n <semantics>\\n <mi>O</mi>\\n <annotation>$\\\\mathcal {O}$</annotation>\\n </semantics></math> is the Culler–Vogtmann outer space. In a future paper, we will apply this theorem to study the geometry of free group extensions.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"18 2\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70024\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.70024\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.70024","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设G$ G$是一个自由积G = a 1∗a 2∗⋯∗ak * F N$ G = A_1 * A_2* \cdots * A_k * F_N$,其中每个群A $ i$ A_i$是无扭转的,F $N$ F_N$是秩为N$ N$的自由群。设O $\mathcal {O}$为与此自由积分解相关的变形空间。我们证明了O $\mathcal {O}$的子集的投影的直径是有界的,其中给定的元素对Z $\mathcal {Z}$ -因子图具有有界的长度,其中直径界仅取决于长度界。这依赖于对G$ G$作为一个双曲群的边界的分析,该双曲群相对于子群a $ i$ A_i$和给定的非外周循环子群的集合。主要定理是新的,即使在G = F N$ G = F_N$的情况下,在这种情况下O $\mathcal {O}$是Culler-Vogtmann外空间。在以后的论文中,我们将把这个定理应用到自由群扩展的几何研究中。
Bounded projections to the
Z
$\mathcal {Z}$
-factor graph
Suppose that is a free product , where each of the groups is torsion-free and is a free group of rank . Let be the deformation space associated to this free product decomposition. We show that the diameter of the projection of the subset of where a given element has bounded length to the -factor graph is bounded, where the diameter bound depends only on the length bound. This relies on an analysis of the boundary of as a hyperbolic group relative to the collection of subgroups together with a given nonperipheral cyclic subgroup. The main theorem is new even in the case that , in which case is the Culler–Vogtmann outer space. In a future paper, we will apply this theorem to study the geometry of free group extensions.
期刊介绍:
The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal.
The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.