动机亚当斯猜想

IF 1.1 2区 数学 Q2 MATHEMATICS
Alexey Ananyevskiy, Elden Elmanto, Oliver Röndigs, Maria Yakerson
{"title":"动机亚当斯猜想","authors":"Alexey Ananyevskiy,&nbsp;Elden Elmanto,&nbsp;Oliver Röndigs,&nbsp;Maria Yakerson","doi":"10.1112/topo.70026","DOIUrl":null,"url":null,"abstract":"<p>We solve a motivic version of the Adams conjecture with the exponential characteristic of the base field inverted. In the way of the proof,, we obtain a motivic version of mod <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> Dold theorem and give a motivic version of Brown's trick studying the homogeneous variety <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>N</mi>\n <msub>\n <mi>GL</mi>\n <mi>r</mi>\n </msub>\n </msub>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>∖</mo>\n </mrow>\n <msub>\n <mi>GL</mi>\n <mi>r</mi>\n </msub>\n </mrow>\n <annotation>$(N_{\\mathrm{GL}_r} T)\\backslash \\mathrm{GL}_r$</annotation>\n </semantics></math> which turns out to be not stably <span></span><math>\n <semantics>\n <msup>\n <mi>A</mi>\n <mn>1</mn>\n </msup>\n <annotation>$\\mathbf {A}^1$</annotation>\n </semantics></math>-connected. We also show that the higher motivic stable stems are of bounded torsion.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70026","citationCount":"0","resultStr":"{\"title\":\"The motivic Adams conjecture\",\"authors\":\"Alexey Ananyevskiy,&nbsp;Elden Elmanto,&nbsp;Oliver Röndigs,&nbsp;Maria Yakerson\",\"doi\":\"10.1112/topo.70026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We solve a motivic version of the Adams conjecture with the exponential characteristic of the base field inverted. In the way of the proof,, we obtain a motivic version of mod <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> Dold theorem and give a motivic version of Brown's trick studying the homogeneous variety <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>N</mi>\\n <msub>\\n <mi>GL</mi>\\n <mi>r</mi>\\n </msub>\\n </msub>\\n <mi>T</mi>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mo>∖</mo>\\n </mrow>\\n <msub>\\n <mi>GL</mi>\\n <mi>r</mi>\\n </msub>\\n </mrow>\\n <annotation>$(N_{\\\\mathrm{GL}_r} T)\\\\backslash \\\\mathrm{GL}_r$</annotation>\\n </semantics></math> which turns out to be not stably <span></span><math>\\n <semantics>\\n <msup>\\n <mi>A</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>$\\\\mathbf {A}^1$</annotation>\\n </semantics></math>-connected. We also show that the higher motivic stable stems are of bounded torsion.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"18 2\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70026\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.70026\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.70026","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用基场逆的指数特性,求解了Adams猜想的一个动力版本。在证明的过程中,我们得到了k$ k$ Dold定理的一个动机版本,并给出了研究齐次变量(ngl r T)的Brown技巧的一个动机版本)} GL r$ (N_{\ mathm {GL}_r} T)\反斜杠\ mathm {GL}_r$结果证明不是稳定的A 1$ \mathbf {A}^1$ -连接。我们还证明了高动力稳定系统具有有界扭转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The motivic Adams conjecture

The motivic Adams conjecture

We solve a motivic version of the Adams conjecture with the exponential characteristic of the base field inverted. In the way of the proof,, we obtain a motivic version of mod k $k$ Dold theorem and give a motivic version of Brown's trick studying the homogeneous variety ( N GL r T ) GL r $(N_{\mathrm{GL}_r} T)\backslash \mathrm{GL}_r$ which turns out to be not stably A 1 $\mathbf {A}^1$ -connected. We also show that the higher motivic stable stems are of bounded torsion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信