{"title":"Structure of quasiconvex virtual joins","authors":"Lawk Mineh","doi":"10.1112/topo.70021","DOIUrl":"https://doi.org/10.1112/topo.70021","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> be a relatively hyperbolic group and let <span></span><math>\u0000 <semantics>\u0000 <mi>Q</mi>\u0000 <annotation>$Q$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math> be relatively quasiconvex subgroups. It is known that there are many pairs of finite index subgroups <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>Q</mi>\u0000 <mo>′</mo>\u0000 </msup>\u0000 <msub>\u0000 <mo>⩽</mo>\u0000 <mi>f</mi>\u0000 </msub>\u0000 <mi>Q</mi>\u0000 </mrow>\u0000 <annotation>$Q^{prime } leqslant _f Q$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mo>′</mo>\u0000 </msup>\u0000 <msub>\u0000 <mo>⩽</mo>\u0000 <mi>f</mi>\u0000 </msub>\u0000 <mi>R</mi>\u0000 </mrow>\u0000 <annotation>$R^{prime } leqslant _f R$</annotation>\u0000 </semantics></math> such that the subgroup join <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>⟨</mo>\u0000 <msup>\u0000 <mi>Q</mi>\u0000 <mo>′</mo>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mo>′</mo>\u0000 </msup>\u0000 <mo>⟩</mo>\u0000 </mrow>\u0000 <annotation>$langle Q^{prime }, R^{prime } rangle$</annotation>\u0000 </semantics></math> is also relatively quasiconvex, given suitable assumptions on the profinite topology of <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>. We show that the intersections of such joins with maximal parabolic subgroups of <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> are themselves joins of intersections of the factor subgroups <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>Q</mi>\u0000 <mo>′</mo>\u0000 </msup>\u0000 <annotation>$Q^{prime }$</annotation>\u0000 </semantics></mat","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 2","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143778397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A classification of infinite staircases for Hirzebruch surfaces","authors":"Nicki Magill, Ana Rita Pires, Morgan Weiler","doi":"10.1112/topo.70017","DOIUrl":"https://doi.org/10.1112/topo.70017","url":null,"abstract":"<p>The ellipsoid embedding function of a symplectic manifold gives the smallest amount by which the symplectic form must be scaled in order for a standard ellipsoid of the given eccentricity to embed symplectically into the manifold. It was first computed for the standard four-ball (or equivalently, the complex projective plane) by McDuff and Schlenk, and found to contain the unexpected structure of an “infinite staircase,” that is, an infinite sequence of nonsmooth points arranged in a piecewise linear stair-step pattern. Later work of Usher and Cristofaro-Gardiner–Holm–Mandini–Pires suggested that while four-dimensional symplectic toric manifolds with infinite staircases are plentiful, they are highly nongeneric. This paper concludes the systematic study of one-point blowups of the complex projective plane, building on previous work of Bertozzi-Holm-Maw-McDuff-Mwakyoma-Pires-Weiler, Magill-McDuff, Magill-McDuff-Weiler, and Magill on these Hirzebruch surfaces. We prove a conjecture of Cristofaro-Gardiner–Holm–Mandini–Pires for this family: that if the blowup is of rational weight and the embedding function has an infinite staircase then that weight must be <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>/</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$1/3$</annotation>\u0000 </semantics></math>. We show also that the function for this manifold does not have a descending staircase. Furthermore, we give a sufficient and necessary condition for the existence of an infinite staircase in this family which boils down to solving a quadratic equation and computing the function at one specific value. Many of our intermediate results also apply to the case of the polydisk (or equivalently, the symplectic product of two spheres).</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143581764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the parameterized Tate construction","authors":"J. D. Quigley, Jay Shah","doi":"10.1112/topo.70018","DOIUrl":"https://doi.org/10.1112/topo.70018","url":null,"abstract":"<p>We introduce and study a genuine equivariant refinement of the Tate construction associated to an extension <span></span><math>\u0000 <semantics>\u0000 <mover>\u0000 <mi>G</mi>\u0000 <mo>̂</mo>\u0000 </mover>\u0000 <annotation>$widehat{G}$</annotation>\u0000 </semantics></math> of a finite group <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> by a compact Lie group <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math>, which we call the parameterized Tate construction <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mo>−</mo>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mrow>\u0000 <msub>\u0000 <mi>t</mi>\u0000 <mi>G</mi>\u0000 </msub>\u0000 <mi>K</mi>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$(-)^{t_G K}$</annotation>\u0000 </semantics></math>. Our main theorem establishes the coincidence of three conceptually distinct approaches to its construction when <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math> is also finite: one via recollement theory for the <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math>-free <span></span><math>\u0000 <semantics>\u0000 <mover>\u0000 <mi>G</mi>\u0000 <mo>̂</mo>\u0000 </mover>\u0000 <annotation>$widehat{G}$</annotation>\u0000 </semantics></math>-family, another via parameterized ambidexterity for <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-local systems, and the last via parameterized assembly maps. We also show that <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mo>−</mo>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mrow>\u0000 <msub>\u0000 <mi>t</mi>\u0000 <mi>G</mi>\u0000 </msub>\u0000 <mi>K</mi>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$(-)^{t_G K}$</annotation>\u0000 </semantics></math> uniquely admits the structure o","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Mumford conjecture (after Bianchi)","authors":"Ronno Das, Dan Petersen","doi":"10.1112/topo.70016","DOIUrl":"https://doi.org/10.1112/topo.70016","url":null,"abstract":"<p>We give a self-contained and streamlined rendition of Andrea Bianchi's recent proof of the Mumford conjecture using moduli spaces of branched covers.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143521943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agnès Beaudry, Michael A. Hill, Tyler Lawson, XiaoLin Danny Shi, Mingcong Zeng
{"title":"On the slice spectral sequence for quotients of norms of Real bordism","authors":"Agnès Beaudry, Michael A. Hill, Tyler Lawson, XiaoLin Danny Shi, Mingcong Zeng","doi":"10.1112/topo.70015","DOIUrl":"https://doi.org/10.1112/topo.70015","url":null,"abstract":"<p>In this paper, we investigate equivariant quotients of the Real bordism spectrum's multiplicative norm <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>M</mi>\u0000 <msup>\u0000 <mi>U</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mspace></mspace>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mn>2</mn>\u0000 <mi>n</mi>\u0000 </msup>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mspace></mspace>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$MU^{(!(C_{2^n})!)}$</annotation>\u0000 </semantics></math> by permutation summands. These quotients are of interest because of their close relationship with higher real <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math>-theories. We introduce new techniques for computing the equivariant homotopy groups of such quotients. As a new example, we examine the theories <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>B</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mspace></mspace>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mn>2</mn>\u0000 <mi>n</mi>\u0000 </msup>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mspace></mspace>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msup>\u0000 <mrow>\u0000 <mo>⟨</mo>\u0000 <mi>m</mi>\u0000 <mo>,</mo>\u0000 <mi>m</mi>\u0000 <mo>⟩</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$BP^{(!(C_{2^n})!)}langle m,mrangle$</annotation>\u0000 </semantics></math>. These spectra serve as natural equivariant generalizations of connective integral Morava <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math>-theories. We provide a complete computation of the <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>a</mi>\u0000 <mi>σ</mi>\u0000 </msub","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143521902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Groups with exotic finiteness properties from complex Morse theory","authors":"Claudio Llosa Isenrich, Pierre Py","doi":"10.1112/topo.70013","DOIUrl":"https://doi.org/10.1112/topo.70013","url":null,"abstract":"<p>Recent constructions have shown that interesting behaviours can be observed in the finiteness properties of Kähler groups and their subgroups. In this work, we push this further and exhibit, for each integer <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>, new hyperbolic groups admitting surjective homomorphisms to <span></span><math>\u0000 <semantics>\u0000 <mi>Z</mi>\u0000 <annotation>${mathbb {Z}}$</annotation>\u0000 </semantics></math> and to <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>Z</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>${mathbb {Z}}^{2}$</annotation>\u0000 </semantics></math>, whose kernel is of type <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <annotation>$mathcal {F}_{k}$</annotation>\u0000 </semantics></math> but not of type <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 <annotation>$mathcal {F}_{k+1}$</annotation>\u0000 </semantics></math>. By a fibre product construction, we also find examples of non-normal subgroups of Kähler groups with exotic finiteness properties.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143513792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Milnor fiber consistency via flatness","authors":"Alex Hof","doi":"10.1112/topo.70014","DOIUrl":"https://doi.org/10.1112/topo.70014","url":null,"abstract":"<p>We describe a new algebro-geometric perspective on the study of the Milnor fibration and, as a first step toward putting it into practice, prove powerful criteria for a deformation of a holomorphic function germ to admit a stratification on its domain partially satisfying the Thom condition and, more generally, to respect the Milnor fibration of the original germ in an appropriate sense. As corollaries, we obtain a method of partitioning the space of homogeneous polynomials of a fixed degree into finitely many locally closed subsets such that the fiber diffeomorphism type of the Milnor fibration is constant along each subset and a criterion under which deformations of a function with critical locus a complete intersection will be well-behaved.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143513791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Homological mirror symmetry for functors between Fukaya categories of very affine hypersurfaces","authors":"Benjamin Gammage, Maxim Jeffs","doi":"10.1112/topo.70012","DOIUrl":"https://doi.org/10.1112/topo.70012","url":null,"abstract":"<p>We prove that homological mirror symmetry for very affine hypersurfaces respects certain natural symplectic operations (as functors between partially wrapped Fukaya categories), verifying conjectures of Auroux. These conjectures concern compatibility between mirror symmetry for a very affine hypersurface and its complement, itself also a very affine hypersurface. We find that the complement of a very affine hypersurface has, in fact, two natural mirrors, one of which is a derived scheme. These two mirrors are related via a nongeometric equivalence mediated by Knörrer periodicity; Auroux's conjectures require some modification to take this into account. Our proof also introduces new techniques for presenting Liouville manifolds as gluings of Liouville sectors.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neck-pinching of \u0000 \u0000 \u0000 C\u0000 \u0000 P\u0000 1\u0000 \u0000 \u0000 $mathbb {C}{rm P}^1$\u0000 -structures in the \u0000 \u0000 \u0000 \u0000 PSL\u0000 2\u0000 \u0000 C\u0000 \u0000 ${rm PSL}_2mathbb {C}$\u0000 -character variety","authors":"Shinpei Baba","doi":"10.1112/topo.70010","DOIUrl":"10.1112/topo.70010","url":null,"abstract":"<p>We characterize a certain neck-pinching degeneration of (marked) <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {C}{rm P}^1$</annotation>\u0000 </semantics></math>-structures on a closed oriented surface <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math> of genus at least two. In a more general setting, we take a path of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {C}{rm P}^1$</annotation>\u0000 </semantics></math>-structures <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>C</mi>\u0000 <mi>t</mi>\u0000 </msub>\u0000 <mspace></mspace>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>t</mi>\u0000 <mo>⩾</mo>\u0000 <mn>0</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$C_t nobreakspace (t geqslant 0)$</annotation>\u0000 </semantics></math> on <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math> that leaves every compact subset in its deformation space, such that the holonomy of <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>C</mi>\u0000 <mi>t</mi>\u0000 </msub>\u0000 <annotation>$C_t$</annotation>\u0000 </semantics></math> converges in the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>PSL</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mi>C</mi>\u0000 </mrow>\u0000 <annotation>${rm PSL}_2mathbb {C}$</annotation>\u0000 </semantics></math>-character variety as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mo>→</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation>$t rightarrow infty$</annotation>\u0000 </semantics></math>. Then, it is well known that the complex structure <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>X</m","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685183/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142916395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}