{"title":"Stated SL(\u0000 \u0000 n\u0000 $n$\u0000 )-skein modules and algebras","authors":"Thang T. Q. Lê, Adam S. Sikora","doi":"10.1112/topo.12350","DOIUrl":"https://doi.org/10.1112/topo.12350","url":null,"abstract":"<p>We develop a theory of stated SL(<span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>)-skein modules, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>M</mi>\u0000 <mo>,</mo>\u0000 <mi>N</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathcal {S}_n(M,mathcal {N})$</annotation>\u0000 </semantics></math>, of 3-manifolds <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math> marked with intervals <span></span><math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$mathcal {N}$</annotation>\u0000 </semantics></math> in their boundaries. These skein modules, generalizing stated SL(2)-modules of the first author, stated SL(3)-modules of Higgins', and SU(n)-skein modules of the second author, consist of linear combinations of framed, oriented graphs, called <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>-webs, with ends in <span></span><math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$mathcal {N}$</annotation>\u0000 </semantics></math>, considered up to skein relations of the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>U</mi>\u0000 <mi>q</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>s</mi>\u0000 <msub>\u0000 <mi>l</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$U_q(sl_n)$</annotation>\u0000 </semantics></math>-Reshetikhin–Turaev functor on tangles, involving coupons representing the anti-symmetrizer and its dual. We prove the Splitting Theorem asserting that cutting of a marked 3-manifold <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math> along a disk resulting in a 3-manifold <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>M</mi>\u0000 <mo>′</mo>\u0000 </msup>\u0000 <annotation>$M^{prime }$</annotation>\u0000 </semantics></math> yields a homomorphism <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mi>n</mi>\u0000 ","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}