{"title":"On the parameterized Tate construction","authors":"J. D. Quigley, Jay Shah","doi":"10.1112/topo.70018","DOIUrl":null,"url":null,"abstract":"<p>We introduce and study a genuine equivariant refinement of the Tate construction associated to an extension <span></span><math>\n <semantics>\n <mover>\n <mi>G</mi>\n <mo>̂</mo>\n </mover>\n <annotation>$\\widehat{G}$</annotation>\n </semantics></math> of a finite group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> by a compact Lie group <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>, which we call the parameterized Tate construction <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mo>)</mo>\n </mrow>\n <mrow>\n <msub>\n <mi>t</mi>\n <mi>G</mi>\n </msub>\n <mi>K</mi>\n </mrow>\n </msup>\n <annotation>$(-)^{t_G K}$</annotation>\n </semantics></math>. Our main theorem establishes the coincidence of three conceptually distinct approaches to its construction when <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> is also finite: one via recollement theory for the <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-free <span></span><math>\n <semantics>\n <mover>\n <mi>G</mi>\n <mo>̂</mo>\n </mover>\n <annotation>$\\widehat{G}$</annotation>\n </semantics></math>-family, another via parameterized ambidexterity for <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-local systems, and the last via parameterized assembly maps. We also show that <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mo>)</mo>\n </mrow>\n <mrow>\n <msub>\n <mi>t</mi>\n <mi>G</mi>\n </msub>\n <mi>K</mi>\n </mrow>\n </msup>\n <annotation>$(-)^{t_G K}$</annotation>\n </semantics></math> uniquely admits the structure of a lax <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-symmetric monoidal functor, thereby refining a theorem of Nikolaus and Scholze. Along the way, we apply a theorem of the second author to reprove a result of Ayala–Mazel-Gee–Rozenblyum on reconstructing a genuine <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-spectrum from its geometric fixed points; our method of proof further yields a formula for the geometric fixed points of an <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math>-complete <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-spectrum for any <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>-family <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math>.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/topo.70018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.70018","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce and study a genuine equivariant refinement of the Tate construction associated to an extension of a finite group by a compact Lie group , which we call the parameterized Tate construction . Our main theorem establishes the coincidence of three conceptually distinct approaches to its construction when is also finite: one via recollement theory for the -free -family, another via parameterized ambidexterity for -local systems, and the last via parameterized assembly maps. We also show that uniquely admits the structure of a lax -symmetric monoidal functor, thereby refining a theorem of Nikolaus and Scholze. Along the way, we apply a theorem of the second author to reprove a result of Ayala–Mazel-Gee–Rozenblyum on reconstructing a genuine -spectrum from its geometric fixed points; our method of proof further yields a formula for the geometric fixed points of an -complete -spectrum for any -family .
我们引入并研究了与紧凑李群 K $K$ 的有限群 G $G$ 的扩展 G ̂\ $widehat{G}$ 相关的塔特构造的真正等变细化,我们称之为参数化塔特构造 ( - ) t G K $(-)^{t_G K}$ 。我们的主要定理确定了当 K $K$ 也是有限时,三种概念上不同的构造方法的重合:一种是通过 K $K$ -free G ̂ $\widehat{G}$ -family 的重补理论,另一种是通过 G $G$ -local 系统的参数化安倍性,最后一种是通过参数化集合映射。我们还证明了 ( - ) t G K $(-)^{t_G K}$ 可以唯一地接受涣散的 G $G$ 对称单环函子结构,从而完善了尼古拉斯和肖尔泽的定理。在此过程中,我们运用第二作者的一个定理,重新证明了阿亚拉-马泽尔-吉-罗曾布利姆(Ayala-Mazel-Gee-Rozenblyum)关于从几何定点重构真正的 G $G$ 谱的一个结果;我们的证明方法进一步得出了对于任何 G $G$ 族 F $\mathcal {F}$ 的 F $\mathcal {F}$ 完整 G $G$ 谱的几何定点公式。
期刊介绍:
The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal.
The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.